IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v81y2022i2d10.1007_s10589-021-00336-w.html
   My bibliography  Save this article

Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method

Author

Listed:
  • Yuya Yamakawa

    (Kyoto University)

  • Hiroyuki Sato

    (Kyoto University)

Abstract

Recently, the approximate Karush–Kuhn–Tucker (AKKT) conditions, also called the sequential optimality conditions, have been proposed for nonlinear optimization in Euclidean spaces, and several methods to find points satisfying such conditions have been developed by researchers. These conditions are known as genuine necessary optimality conditions because all local optima satisfy them with no constraint qualification (CQ). In this paper, we extend the AKKT conditions to nonlinear optimization on Riemannian manifolds and propose an augmented Lagrangian (AL) method that globally converges to points satisfying such conditions. In addition, we prove that the AKKT and KKT conditions are indeed equivalent under a certain CQ. Finally, we examine the effectiveness of the proposed AL method via several numerical experiments.

Suggested Citation

  • Yuya Yamakawa & Hiroyuki Sato, 2022. "Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 81(2), pages 397-421, March.
  • Handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00336-w
    DOI: 10.1007/s10589-021-00336-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00336-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00336-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.
    2. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    3. Hiroyuki Sato & Kensuke Aihara, 2019. "Cholesky QR-based retraction on the generalized Stiefel manifold," Computational Optimization and Applications, Springer, vol. 72(2), pages 293-308, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Brennan McCann & Morad Nazari & Christopher Petersen, 2024. "Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1116-1150, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Brennan McCann & Morad Nazari & Christopher Petersen, 2024. "Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1116-1150, June.
    3. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    4. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    5. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions II: Extended Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 745-762, March.
    6. Li Yang & Bo Yu & YanXi Li, 2015. "A homotopy method based on penalty function for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 63(1), pages 61-76, September.
    7. Yuya Yamakawa & Takayuki Okuno, 2022. "A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs," Computational Optimization and Applications, Springer, vol. 83(3), pages 1027-1064, December.
    8. Hiroyuki Sato, 2023. "Riemannian optimization on unit sphere with p-norm and its applications," Computational Optimization and Applications, Springer, vol. 85(3), pages 897-935, July.
    9. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    10. Ke Wang & Zhuo Chen & Shihui Ying & Xinjian Xu, 2023. "Low-Rank Matrix Completion via QR-Based Retraction on Manifolds," Mathematics, MDPI, vol. 11(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:2:d:10.1007_s10589-021-00336-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.