IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v35y2018i03ns0217595918500094.html
   My bibliography  Save this article

An SQP-type Method with Superlinear Convergence for Nonlinear Semidefinite Programming

Author

Listed:
  • Qi Zhao

    (School of Mathematical Science, Soochow University, Suzhou 215006, P. R. China)

  • Zhongwen Chen

    (School of Mathematical Science, Soochow University, Suzhou 215006, P. R. China)

Abstract

A sequentially semidefinite programming method is proposed for solving nonlinear semidefinite programming problem (NLSDP). Inspired by the sequentially quadratic programming (SQP) method, the algorithm generates a search direction by solving a quadratic semidefinite programming subproblem at each iteration. The l1 exact penalty function and a line search strategy are used to determine whether the trial step can be accepted or not. Under mild assumptions, the proposed algorithm is globally convergent. In order to avoid the Maratos effect, we present a modified SQP-type algorithm with the second-order correction step and prove that the fast local superlinear convergence can be obtained under the strict complementarity and the second-order sufficient condition with the sigma term. Finally, some numerical experiments are given to show the effectiveness of the algorithm.

Suggested Citation

  • Qi Zhao & Zhongwen Chen, 2018. "An SQP-type Method with Superlinear Convergence for Nonlinear Semidefinite Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-25, June.
  • Handle: RePEc:wsi:apjorx:v:35:y:2018:i:03:n:s0217595918500094
    DOI: 10.1142/S0217595918500094
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595918500094
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595918500094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Kanno & I. Takewaki, 2006. "Sequential Semidefinite Program for Maximum Robustness Design of Structures under Load Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 130(2), pages 265-287, August.
    2. Zhongwen Chen & Shicai Miao, 2015. "A Penalty-Free Method with Trust Region for Nonlinear Semidefinite Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(01), pages 1-24.
    3. Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuya Yamakawa & Takayuki Okuno, 2022. "A stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programs," Computational Optimization and Applications, Springer, vol. 83(3), pages 1027-1064, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liwei Zhang & Shengzhe Gao & Saoyan Guo, 2019. "Statistical Inference of Second-Order Cone Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-17, April.
    2. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    3. H. Wu & H. Luo & J. Yang, 2014. "Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 59(4), pages 695-727, August.
    4. Diethard Klatte & Bernd Kummer, 2013. "Aubin property and uniqueness of solutions in cone constrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 291-304, June.
    5. Yun Wang & Liwei Zhang, 2009. "Properties of equation reformulation of the Karush–Kuhn–Tucker condition for nonlinear second order cone optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 195-218, October.
    6. Jia Wu & Yi Zhang & Liwei Zhang & Yue Lu, 2016. "A Sequential Convex Program Approach to an Inverse Linear Semidefinite Programming Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(04), pages 1-26, August.
    7. Boris S. Mordukhovich & T. T. A. Nghia, 2014. "Nonsmooth Cone-Constrained Optimization with Applications to Semi-Infinite Programming," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 301-324, May.
    8. Qi Zhao & Zhongwen Chen, 2020. "A line search exact penalty method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 467-491, March.
    9. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    10. B. S. Mordukhovich & T. T. A. Nghia & R. T. Rockafellar, 2015. "Full Stability in Finite-Dimensional Optimization," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 226-252, February.
    11. Chengjing Wang, 2016. "On how to solve large-scale log-determinant optimization problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 489-511, June.
    12. Jérôme Bolte & Aris Daniilidis & Adrian S. Lewis, 2011. "Generic Optimality Conditions for Semialgebraic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 55-70, February.
    13. Jianzhong Zhang & Liwei Zhang & Xiantao Xiao, 2010. "A Perturbation approach for an inverse quadratic programming problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 379-404, December.
    14. Liwei Zhang & Shaoyan Guo & Jia Wu & Shoulin Hao, 2013. "Nonsingularity in matrix conic optimization induced by spectral norm via a smoothing metric projector," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 373-404, December.
    15. Shun Arahata & Takayuki Okuno & Akiko Takeda, 2023. "Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 555-598, November.
    16. Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
    17. Rodrigo Garcés & Walter Gómez & Florian Jarre, 2011. "A self-concordance property for nonconvex semidefinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(1), pages 77-92, August.
    18. Chengjin Li, 2014. "A New Approximation of the Matrix Rank Function and Its Application to Matrix Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 569-594, November.
    19. Qingna Li & Donghui Li & Houduo Qi, 2010. "Newton’s Method for Computing the Nearest Correlation Matrix with a Simple Upper Bound," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 546-568, December.
    20. Huixian Wu & Hezhi Luo & Xiaodong Ding & Guanting Chen, 2013. "Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 531-558, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:35:y:2018:i:03:n:s0217595918500094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.