IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i3p671-678.html
   My bibliography  Save this article

Nonparametric quantile frontier estimation under shape restriction

Author

Listed:
  • Wang, Yongqiao
  • Wang, Shouyang
  • Dang, Chuangyin
  • Ge, Wenxiu

Abstract

This paper proposes a shape-restricted nonparametric quantile regression to estimate the τ-frontier, which acts as a benchmark for whether a decision making unit achieves top τ efficiency. This method adopts a two-step strategy: first, identifying fitted values that minimize an asymmetric absolute loss under the nondecreasing and concave shape restriction; second, constructing a nondecreasing and concave estimator that links these fitted values. This method makes no assumption on the error distribution and the functional form. Experimental results on some artificial data sets clearly demonstrate its superiority over the classical linear quantile regression. We also discuss how to enforce constraints to avoid quantile crossings between multiple estimated frontiers with different values of τ. Finally this paper shows that this method can be applied to estimate the production function when one has some prior knowledge about the error term.

Suggested Citation

  • Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:671-678
    DOI: 10.1016/j.ejor.2013.06.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713005560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.06.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behr, Andreas, 2010. "Quantile regression for robust bank efficiency score estimation," European Journal of Operational Research, Elsevier, vol. 200(2), pages 568-581, January.
    2. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    3. Néstor Aguilera & Liliana Forzani & Pedro Morin, 2011. "On uniform consistent estimators for convex regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 897-908.
    4. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    5. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
    6. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Cristina Bernini & Marzia Freo & Attilio Gardini, 2004. "Quantile estimation of frontier production function," Empirical Economics, Springer, vol. 29(2), pages 373-381, May.
    9. Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Eunji Lim & Peter W. Glynn, 2012. "Consistency of Multidimensional Convex Regression," Operations Research, INFORMS, vol. 60(1), pages 196-208, February.
    12. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    13. Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
    14. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    15. Somers, Mark & Whittaker, Joe, 2007. "Quantile regression for modelling distributions of profit and loss," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1477-1487, December.
    16. Martins-Filho, Carlos & Yao, Feng, 2008. "A smooth nonparametric conditional quantile frontier estimator," Journal of Econometrics, Elsevier, vol. 143(2), pages 317-333, April.
    17. Daouia, Abdelaati & Simar, Leopold, 2007. "Nonparametric efficiency analysis: A multivariate conditional quantile approach," Journal of Econometrics, Elsevier, vol. 140(2), pages 375-400, October.
    18. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    19. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dai, Sheng & Kuosmanen, Timo & Zhou, Xun, 2023. "Generalized quantile and expectile properties for shape constrained nonparametric estimation," European Journal of Operational Research, Elsevier, vol. 310(2), pages 914-927.
    2. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    3. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    4. Galina Besstremyannaya, 2015. "Heterogeneous effect of residency matching and prospective payment on labor returns and hospital scale economies," Discussion Papers 15-001, Stanford Institute for Economic Policy Research.
    5. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    6. Galina Besstremyannaya, 2014. "The efficiency of labor matching and remuneration reforms: a panel data quantile regression approach with endogenous treatment variables," Working Papers w0206, Center for Economic and Financial Research (CEFIR).
    7. Besstremyannaya, Galina, 2017. "Heterogeneous effect of the global financial crisis and the Great East Japan Earthquake on costs of Japanese banks," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 66-89.
    8. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    9. Behr, Andreas, 2010. "Quantile regression for robust bank efficiency score estimation," European Journal of Operational Research, Elsevier, vol. 200(2), pages 568-581, January.
    10. Galina Besstremyannaya, 2014. "The efficiency of labor matching and remuneration reforms: a panel data quantile regression approach with endogenous treatment variables," Working Papers w0206, New Economic School (NES).
    11. Ferrara, Giancarlo & Vidoli, Francesco, 2017. "Semiparametric stochastic frontier models: A generalized additive model approach," European Journal of Operational Research, Elsevier, vol. 258(2), pages 761-777.
    12. Martins-Filho, Carlos & Ziegelmann, Flávio Augusto & Torrent, Hudson da Silva, 2013. "Local Exponential Frontier Estimation," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 33(2), November.
    13. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.
    14. Hung-pin Lai & Cliff J. Huang & Tsu-Tan Fu, 2020. "Estimation of the production profile and metafrontier technology gap: a quantile approach," Empirical Economics, Springer, vol. 58(6), pages 2709-2731, June.
    15. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    16. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
    17. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    18. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    19. Quaranta, Anna Grazia & Raffoni, Anna & Visani, Franco, 2018. "A multidimensional approach to measuring bank branch efficiency," European Journal of Operational Research, Elsevier, vol. 266(2), pages 746-760.
    20. Olesen, O.B. & Ruggiero, J., 2018. "An improved Afriat–Diewert–Parkan nonparametric production function estimator," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1172-1188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:671-678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.