IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0191875.html
   My bibliography  Save this article

A study on nonlinear estimation of submaximal effort tolerance based on the generalized MET concept and the 6MWT in pulmonary rehabilitation

Author

Listed:
  • Jan Szczegielniak
  • Krzysztof J Latawiec
  • Jacek Łuniewski
  • Rafał Stanisławski
  • Katarzyna Bogacz
  • Marcin Krajczy
  • Marek Rydel

Abstract

Background: The six-minute walk test (6MWT) is considered to be a simple and inexpensive tool for the assessment of functional tolerance of submaximal effort. The aim of this work was 1) to background the nonlinear nature of the energy expenditure process due to physical activity, 2) to compare the results/scores of the submaximal treadmill exercise test and those of 6MWT in pulmonary patients and 3) to develop nonlinear mathematical models relating the two. Methods: The study group included patients with the COPD. All patients were subjected to a submaximal exercise test and a 6MWT. To develop an optimal mathematical solution and compare the results of the exercise test and the 6MWT, the least squares and genetic algorithms were employed to estimate parameters of polynomial expansion and piecewise linear models. Results: Mathematical analysis enabled to construct nonlinear models for estimating the MET result of submaximal exercise test based on average walk velocity (or distance) in the 6MWT. Conclusions: Submaximal effort tolerance in COPD patients can be effectively estimated from new, rehabilitation-oriented, nonlinear models based on the generalized MET concept and the 6MWT.

Suggested Citation

  • Jan Szczegielniak & Krzysztof J Latawiec & Jacek Łuniewski & Rafał Stanisławski & Katarzyna Bogacz & Marcin Krajczy & Marek Rydel, 2018. "A study on nonlinear estimation of submaximal effort tolerance based on the generalized MET concept and the 6MWT in pulmonary rehabilitation," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0191875
    DOI: 10.1371/journal.pone.0191875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0191875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0191875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Toriello, Alejandro & Vielma, Juan Pablo, 2012. "Fitting piecewise linear continuous functions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 86-95.
    2. J P Stellmann & A Neuhaus & N Götze & S Briken & C Lederer & M Schimpl & C Heesen & M Daumer, 2015. "Ecological Validity of Walking Capacity Tests in Multiple Sclerosis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-11, April.
    3. Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Rutkowski & Katarzyna Bogacz & Oliver Czech & Anna Rutkowska & Jan Szczegielniak, 2022. "Effectiveness of an Inpatient Virtual Reality-Based Pulmonary Rehabilitation Program among COVID-19 Patients on Symptoms of Anxiety, Depression and Quality of Life: Preliminary Results from a Randomiz," IJERPH, MDPI, vol. 19(24), pages 1-12, December.
    2. Jan Szczegielniak & Anna Szczegielniak & Jacek Łuniewski & Katarzyna Bogacz, 2022. "Proprietary Model of Qualification for In-Hospital Rehabilitation after COVID-19," IJERPH, MDPI, vol. 19(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Lee & Daphne Skipper & Emily Speakman & Luze Xu, 2023. "Gaining or Losing Perspective for Piecewise-Linear Under-Estimators of Convex Univariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 1-35, January.
    2. Yuxun Wang & Liang Fang & Chao Liu & Lanxin Wang & Huimei Xu, 2023. "The Influential Factors of the Habitat Quality of the Red-crowned Crane: A Case Study of Yancheng, Jiangsu Province, China," Land, MDPI, vol. 12(6), pages 1-20, June.
    3. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    4. Noam Goldberg & Steffen Rebennack & Youngdae Kim & Vitaliy Krasko & Sven Leyffer, 2021. "MINLP formulations for continuous piecewise linear function fitting," Computational Optimization and Applications, Springer, vol. 79(1), pages 223-233, May.
    5. Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P. & Botsaris, Pantelis N., 2024. "A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability analysis using kNN and SVM regression models in northeastern Greece," Renewable Energy, Elsevier, vol. 221(C).
    6. Hossein Jargan & Abbas Rohani & Armaghan Kosari-Moghaddam, 2022. "Application of modeling techniques for energy analysis of fruit production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2616-2639, February.
    7. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).
    8. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    9. Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Model-based Clustering of Count Processes," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 188-211, July.
    10. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    11. Sophie van Huellen & Duo Qin, 2019. "Compulsory Schooling and Returns to Education: A Re-Examination," Econometrics, MDPI, vol. 7(3), pages 1-20, September.
    12. Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
    13. Wenjing Yang & Yuhong Yang, 2017. "Toward an objective and reproducible model choice via variable selection deviation," Biometrics, The International Biometric Society, vol. 73(1), pages 20-30, March.
    14. Admassu N. Lamu, 2020. "Does linear equating improve prediction in mapping? Crosswalking MacNew onto EQ-5D-5L value sets," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(6), pages 903-915, August.
    15. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.
    16. Qiang Shang & Ciyun Lin & Zhaosheng Yang & Qichun Bing & Xiyang Zhou, 2016. "A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    17. Wang, Yongqiao & Wang, Shouyang & Dang, Chuangyin & Ge, Wenxiu, 2014. "Nonparametric quantile frontier estimation under shape restriction," European Journal of Operational Research, Elsevier, vol. 232(3), pages 671-678.
    18. Pei Zhao & Chao Wang & Shuhong Sun & Xi Wang & William E. Balch, 2024. "Tracing genetic diversity captures the molecular basis of misfolding disease," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    19. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0191875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.