IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v163y2014i1d10.1007_s10957-013-0489-z.html
   My bibliography  Save this article

Inexact Alternating-Direction-Based Contraction Methods for Separable Linearly Constrained Convex Optimization

Author

Listed:
  • Guoyong Gu

    (Nanjing University)

  • Bingsheng He

    (Nanjing University)

  • Junfeng Yang

    (Nanjing University)

Abstract

Alternating direction method of multipliers has been well studied in the context of linearly constrained convex optimization. In the last few years, we have witnessed a number of novel applications arising from image processing, compressive sensing and statistics, etc., where the approach is surprisingly efficient. In the early applications, the objective function of the linearly constrained convex optimization problem is separable into two parts. Recently, the alternating direction method of multipliers has been extended to the case where the number of the separable parts in the objective function is finite. However, in each iteration, the subproblems are required to be solved exactly. In this paper, by introducing some reasonable inexactness criteria, we propose two inexact alternating-direction-based contraction methods, which substantially broaden the applicable scope of the approach. The convergence and complexity results for both methods are derived in the framework of variational inequalities.

Suggested Citation

  • Guoyong Gu & Bingsheng He & Junfeng Yang, 2014. "Inexact Alternating-Direction-Based Contraction Methods for Separable Linearly Constrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 105-129, October.
  • Handle: RePEc:spr:joptap:v:163:y:2014:i:1:d:10.1007_s10957-013-0489-z
    DOI: 10.1007/s10957-013-0489-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-013-0489-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-013-0489-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao-fen Li & Wen Li & Ru Huang, 2016. "An efficient method for solving a matrix least squares problem over a matrix inequality constraint," Computational Optimization and Applications, Springer, vol. 63(2), pages 393-423, March.
    2. Jianchao Bai & William W. Hager & Hongchao Zhang, 2022. "An inexact accelerated stochastic ADMM for separable convex optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 479-518, March.
    3. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    4. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:163:y:2014:i:1:d:10.1007_s10957-013-0489-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.