IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v75y2020i2d10.1007_s10589-019-00151-4.html
   My bibliography  Save this article

A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs

Author

Listed:
  • Enrico Bettiol

    (Université Paris 13, Sorbonne Paris Cité)

  • Lucas Létocart

    (Université Paris 13, Sorbonne Paris Cité)

  • Francesco Rinaldi

    (Università di Padova)

  • Emiliano Traversi

    (Université Paris 13, Sorbonne Paris Cité)

Abstract

Many real-world applications can usually be modeled as convex quadratic problems. In the present paper, we want to tackle a specific class of quadratic programs having a dense Hessian matrix and a structured feasible set. We hence carefully analyze a simplicial decomposition like algorithmic framework that handles those problems in an effective way. We introduce a new master solver, called Adaptive Conjugate Direction Method, and embed it in our framework. We also analyze the interaction of some techniques for speeding up the solution of the pricing problem. We report extensive numerical experiments based on a benchmark of almost 1400 instances from specific and generic quadratic problems. We show the efficiency and robustness of the method when compared to a commercial solver (Cplex).

Suggested Citation

  • Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
  • Handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00151-4
    DOI: 10.1007/s10589-019-00151-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00151-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00151-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    2. Gondzio, J. & du Merle, O. & Sarkissian, R. & Vial, J. -P., 1996. "ACCPM -- A library for convex optimization based on an analytic center cutting plane method," European Journal of Operational Research, Elsevier, vol. 94(1), pages 206-211, October.
    3. GOFFIN, Jean-Louis & VIAL, Jean-Philippe, 1990. "Cutting planes and column generation techniques with the projective algorithm," LIDAM Reprints CORE 918, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
    5. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    6. Frank Curtis & Zheng Han & Daniel Robinson, 2015. "A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization," Computational Optimization and Applications, Springer, vol. 60(2), pages 311-341, March.
    7. Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
    8. M. Santis & G. Pillo & S. Lucidi, 2012. "An active set feasible method for large-scale minimization problems with bound constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 395-423, October.
    9. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    10. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    11. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    12. Gondzio, J. & Sarkissian, R. & Vial, J.-P., 1997. "Using an interior point method for the master problem in a decomposition approach," European Journal of Operational Research, Elsevier, vol. 101(3), pages 577-587, September.
    13. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristofari, Andrea, 2023. "A decomposition method for lasso problems with zero-sum constraint," European Journal of Operational Research, Elsevier, vol. 306(1), pages 358-369.
    2. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    3. Andrea Cristofari & Gianni Di Pillo & Giampaolo Liuzzi & Stefano Lucidi, 2022. "An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 300-323, June.
    4. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.
    5. Pedro Munari & Reinaldo Morabito, 2018. "A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 437-464, October.
    6. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    7. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    8. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    9. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    10. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    11. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    12. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    13. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    14. Almoustafa, Samira & Hanafi, Said & Mladenović, Nenad, 2013. "New exact method for large asymmetric distance-constrained vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 226(3), pages 386-394.
    15. Streutker, Matthijs & van der Vlerk, Maarten & Klein Haneveld, Wim, 2007. "Implementation of new regulatory rules in a multistage ALM model for Dutch pension funds," Research Report 07005, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    16. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    17. Krzysztof C. Kiwiel & Torbjörn Larsson & P. O. Lindberg, 2007. "Lagrangian Relaxation via Ballstep Subgradient Methods," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 669-686, August.
    18. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.
    19. Marchioni, Andrea & Magni, Carlo Alberto, 2018. "Investment decisions and sensitivity analysis: NPV-consistency of rates of return," European Journal of Operational Research, Elsevier, vol. 268(1), pages 361-372.
    20. Hao Hu & Renata Sotirov, 2020. "On Solving the Quadratic Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 219-233, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00151-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.