IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v192y2009i3p963-974.html
   My bibliography  Save this article

A stochastic programming approach to cash management in banking

Author

Listed:
  • Castro, Jordi

Abstract

The treasurer of a bank is responsible for the cash management of several banking activities. In this work, we focus on two of them: cash management in automatic teller machines (ATMs), and in the compensation of credit card transactions. In both cases a decision must be taken according to a future customers demand, which is uncertain. From historical data we can obtain a discrete probability distribution of this demand, which allows the application of stochastic programming techniques. We present stochastic programming models for each problem. Two short-term and one mid-term models are presented for ATMs. The short-term model with fixed costs results in an integer problem which is solved by a fast (i.e. linear running time) algorithm. The short-term model with fixed and staircase costs is solved through its MILP equivalent deterministic formulation. The mid-term model with fixed and staircase costs gives rise to a multi-stage stochastic problem, which is also solved by its MILP deterministic equivalent. The model for compensation of credit card transactions results in a closed form solution. The optimal solutions of those models are the best decisions to be taken by the bank, and provide the basis for a decision support system.

Suggested Citation

  • Castro, Jordi, 2009. "A stochastic programming approach to cash management in banking," European Journal of Operational Research, Elsevier, vol. 192(3), pages 963-974, February.
  • Handle: RePEc:eee:ejores:v:192:y:2009:i:3:p:963-974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01012-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. G. Kallberg & R. W. White & W. T. Ziemba, 1982. "Short Term Financial Planning under Uncertainty," Management Science, INFORMS, vol. 28(6), pages 670-682, June.
    2. Willem Klein Haneveld & Maarten van der Vlerk, 1999. "Stochastic integer programming:General models and algorithms," Annals of Operations Research, Springer, vol. 85(0), pages 39-57, January.
    3. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.
    2. Francisco Salas-Molina, 2024. "Fitting random cash management models to data," Papers 2401.08548, arXiv.org.
    3. Robert Ferstl & Alex Weissensteiner, 2010. "Cash management using multi-stage stochastic programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 209-219.
    4. Alaeddine Faleh, 2011. "Un modèle de programmation stochastique pour l'allocation stratégique d'actifs d'un régime de retraite partiellement provisionné," Working Papers hal-00561965, HAL.
    5. Venkatesh, Kamini & Ravi, Vadlamani & Prinzie, Anita & Poel, Dirk Van den, 2014. "Cash demand forecasting in ATMs by clustering and neural networks," European Journal of Operational Research, Elsevier, vol. 232(2), pages 383-392.
    6. Bruno Karoubi & R駩s Chenavaz, 2015. "Prices for cash and cash for prices? Theory and evidence on convenient pricing," Applied Economics, Taylor & Francis Journals, vol. 47(38), pages 4102-4115, August.
    7. Mike G. Tsionas & Dionisis Philippas & Constantin Zopounidis, 2023. "Exploring Uncertainty, Sensitivity and Robust Solutions in Mathematical Programming Through Bayesian Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 205-227, June.
    8. Yeliz Ekinci & Nicoleta Serban & Ekrem Duman, 2021. "Optimal ATM replenishment policies under demand uncertainty," Operational Research, Springer, vol. 21(2), pages 999-1029, June.
    9. V. Kamini & V. Ravi & A. Prinzie & D. Van Den Poel, 2013. "Cash Demand Forecasting in ATMs by Clustering and Neural Networks," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/865, Ghent University, Faculty of Economics and Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    2. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    3. repec:dgr:rugsom:00a52 is not listed on IDEAS
    4. Streutker, Matthijs & van der Vlerk, Maarten & Klein Haneveld, Wim, 2007. "Implementation of new regulatory rules in a multistage ALM model for Dutch pension funds," Research Report 07005, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    5. repec:dgr:rugsom:02a21 is not listed on IDEAS
    6. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    7. John Board & Charles Sutcliffe, 2007. "Joined-Up Pensions Policy in the UK: An Asset-Liability Model for Simultaneously Determining the Asset Allocation and Contribution Rate," Economic Analysis, Institute of Economic Sciences, vol. 40(3-4), pages 87-118.
    8. Marchioni, Andrea & Magni, Carlo Alberto, 2018. "Investment decisions and sensitivity analysis: NPV-consistency of rates of return," European Journal of Operational Research, Elsevier, vol. 268(1), pages 361-372.
    9. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    10. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    11. Robert Ferstl & Alexander Weissensteiner, 2011. "Backtesting Short-Term Treasury Management Strategies Based on Multi-Stage Stochastic Programming," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 19, pages 469-494, Palgrave Macmillan.
    12. Klein Haneveld, W.K. & Vlerk, M.H. van der, 2000. "Optimizing electricity distribution using two-stage integer recourse models," Research Report 00A26, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    13. Qureshi, Saad Hassan, 2013. "Consumer Preference of Credit Vs. Debit Card," MPRA Paper 116427, University Library of Munich, Germany, revised 30 Dec 2021.
    14. Bjorn P. Berg & Brian T. Denton, 2017. "Fast Approximation Methods for Online Scheduling of Outpatient Procedure Centers," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 631-644, November.
    15. Valeria Vannoni, 2020. "Financing Italian Firms Throught Invoice Trading Platforms," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 12(3), pages 1-78, March.
    16. Anupam Gupta & R. Ravi & Amitabh Sinha, 2007. "LP Rounding Approximation Algorithms for Stochastic Network Design," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 345-364, May.
    17. Lewis Ntaimo, 2010. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse," Operations Research, INFORMS, vol. 58(1), pages 229-243, February.
    18. McCarl, Bruce A., 1986. "Innovations In Programming Techniques For Risk Analysis," Regional Research Projects > 1986: S-180 Annual Meeting, March 23-26, 1986, Tampa, Florida 271825, Regional Research Projects > S-180: An Economic Analysis of Risk Management Strategies for Agricultural Production Firms.
    19. Klein Haneveld, W.K.. & Streutker, M.H. & Vlerk, M.H. van der, 2005. "An ALM Model for Pension Funds using Integrated Chance Constraints," Research Report 05A03, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    20. Ward Romeijnders & David P. Morton & Maarten H. van der Vlerk, 2017. "Assessing the Quality of Convex Approximations for Two-Stage Totally Unimodular Integer Recourse Models," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 211-231, May.
    21. Kamali, Abrar Ahmed Khan, 2023. "The Customer Relationship Management Practices in Banking Industry," MPRA Paper 116552, University Library of Munich, Germany.
    22. repec:dgr:rugsom:03a14 is not listed on IDEAS
    23. repec:dgr:rugsom:03a21 is not listed on IDEAS
    24. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:192:y:2009:i:3:p:963-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.