IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v193y2022i1d10.1007_s10957-022-02003-4.html
   My bibliography  Save this article

An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information

Author

Listed:
  • Andrea Cristofari

    (University of Padua)

  • Gianni Di Pillo

    (Sapienza University of Rome)

  • Giampaolo Liuzzi

    (Sapienza University of Rome)

  • Stefano Lucidi

    (Sapienza University of Rome)

Abstract

In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate second-order information into the augmented Lagrangian framework, using an active-set strategy. We show that the overall algorithm has the same convergence properties as ALGENCAN and an asymptotic quadratic convergence rate under suitable assumptions. The numerical results confirm that the proposed algorithm is a viable alternative to ALGENCAN with greater robustness.

Suggested Citation

  • Andrea Cristofari & Gianni Di Pillo & Giampaolo Liuzzi & Stefano Lucidi, 2022. "An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 300-323, June.
  • Handle: RePEc:spr:joptap:v:193:y:2022:i:1:d:10.1007_s10957-022-02003-4
    DOI: 10.1007/s10957-022-02003-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02003-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02003-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    2. R. Andreani & J. M. Martinez & M. L. Schuverdt, 2005. "On the Relation between Constant Positive Linear Dependence Condition and Quasinormality Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 473-483, May.
    3. M. Santis & G. Pillo & S. Lucidi, 2012. "An active set feasible method for large-scale minimization problems with bound constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 395-423, October.
    4. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristofari, Andrea, 2023. "A decomposition method for lasso problems with zero-sum constraint," European Journal of Operational Research, Elsevier, vol. 306(1), pages 358-369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    2. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    3. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    4. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    5. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    6. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    7. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
    8. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    9. Kuang Bai & Yixia Song & Jin Zhang, 2023. "Second-Order Enhanced Optimality Conditions and Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1264-1284, September.
    10. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    11. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2022. "Minimization over the $$\ell _1$$ ℓ 1 -ball using an active-set non-monotone projected gradient," Computational Optimization and Applications, Springer, vol. 83(2), pages 693-721, November.
    12. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    13. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    14. Leonid Minchenko, 2019. "Note on Mangasarian–Fromovitz-Like Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1199-1204, September.
    15. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    16. Chungen Shen & Lei-Hong Zhang & Bo Wang & Wenqiong Shao, 2014. "Global and local convergence of a nonmonotone SQP method for constrained nonlinear optimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 435-473, December.
    17. L. Minchenko & A. Tarakanov, 2011. "On Error Bounds for Quasinormal Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 571-579, March.
    18. Nguyen Huy Chieu & Gue Myung Lee, 2014. "Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and their Local Preservation Property," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 755-776, December.
    19. Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 501-522, December.
    20. M. Ahmadvand & M. Esmaeilbeigi & A. Kamandi & F. M. Yaghoobi, 2019. "A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques," Computational Optimization and Applications, Springer, vol. 72(2), pages 499-524, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:193:y:2022:i:1:d:10.1007_s10957-022-02003-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.