IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v307y2021i1d10.1007_s10479-021-04310-x.html
   My bibliography  Save this article

The linearization problem of a binary quadratic problem and its applications

Author

Listed:
  • Hao Hu

    (University of Waterloo)

  • Renata Sotirov

    (Tilburg University)

Abstract

We provide several applications of the linearization problem of a binary quadratic problem. We propose a new lower bounding strategy, called the linearization-based scheme, that is based on a simple certificate for a quadratic function to be non-negative on the feasible set. Each linearization-based bound requires a set of linearizable matrices as an input. We prove that the Generalized Gilmore–Lawler bounding scheme for binary quadratic problems provides linearization-based bounds. Moreover, we show that the bound obtained from the first level reformulation linearization technique is also a type of linearization-based bound, which enables us to provide a comparison among mentioned bounds. However, the strongest linearization-based bound is the one that uses the full characterization of the set of linearizable matrices. We also present a polynomial-time algorithm for the linearization problem of the quadratic shortest path problem on directed acyclic graphs. Our algorithm gives a complete characterization of the set of linearizable matrices for the quadratic shortest path problem.

Suggested Citation

  • Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
  • Handle: RePEc:spr:annopr:v:307:y:2021:i:1:d:10.1007_s10479-021-04310-x
    DOI: 10.1007/s10479-021-04310-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04310-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04310-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suvrajeet Sen & Rekha Pillai & Shirish Joshi & Ajay K. Rathi, 2001. "A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems," Transportation Science, INFORMS, vol. 35(1), pages 37-49, February.
    2. Eranda Çela & Vladimir G. Deineko & Gerhard J. Woeginger, 2016. "Linearizable special cases of the QAP," Journal of Combinatorial Optimization, Springer, vol. 31(3), pages 1269-1279, April.
    3. Warren P. Adams & Hanif D. Sherali, 1986. "A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems," Management Science, INFORMS, vol. 32(10), pages 1274-1290, October.
    4. Peter Hahn & Thomas Grant, 1998. "Lower Bounds for the Quadratic Assignment Problem Based upon a Dual Formulation," Operations Research, INFORMS, vol. 46(6), pages 912-922, December.
    5. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    6. Ante Ćustić & Abraham P. Punnen, 2018. "A characterization of linearizable instances of the quadratic minimum spanning tree problem," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 436-453, February.
    7. Raj A. Sivakumar & Rajan Batta, 1994. "The Variance-Constrained Shortest Path Problem," Transportation Science, INFORMS, vol. 28(4), pages 309-316, November.
    8. Frank Meijer & Renata Sotirov, 2020. "The quadratic cycle cover problem: special cases and efficient bounds," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 1096-1128, May.
    9. Hao Hu & Renata Sotirov, 2020. "On Solving the Quadratic Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 219-233, April.
    10. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    11. Santosh N. Kabadi & Abraham P. Punnen, 2011. "An O ( n 4 ) Algorithm for the QAP Linearization Problem," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 754-761, November.
    12. Paolo Carraresi & Federico Malucelli, 1992. "A New Lower Bound for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 40(1-supplem), pages 22-27, February.
    13. Çela, Eranda & Deineko, Vladimir & Woeginger, Gerhard J., 2018. "New special cases of the Quadratic Assignment Problem with diagonally structured coefficient matrices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 818-834.
    14. Hahn, Peter & Grant, Thomas & Hall, Nat, 1998. "A branch-and-bound algorithm for the quadratic assignment problem based on the Hungarian method," European Journal of Operational Research, Elsevier, vol. 108(3), pages 629-640, August.
    15. Hao Hu & Renata Sotirov, 2018. "Special cases of the quadratic shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 754-777, April.
    16. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    17. Warren P. Adams & Hanif D. Sherali, 1990. "Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems," Operations Research, INFORMS, vol. 38(2), pages 217-226, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fennich, M. Eliass & Fomeni, Franklin Djeumou & Coelho, Leandro C., 2024. "A novel dynamic programming heuristic for the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 319(1), pages 102-120.
    2. Fei Chen & Zhiyang Wang & Yu He, 2023. "A Deep Neural Network-Based Optimal Scheduling Decision-Making Method for Microgrids," Energies, MDPI, vol. 16(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Meijer & Renata Sotirov, 2020. "The quadratic cycle cover problem: special cases and efficient bounds," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 1096-1128, May.
    2. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    3. de Meijer, Frank, 2023. "Integrality and cutting planes in semidefinite programming approaches for combinatorial optimization," Other publications TiSEM b1f1088c-95fe-4b8a-9e15-c, Tilburg University, School of Economics and Management.
    4. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    5. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    6. Hahn, Peter M. & Kim, Bum-Jin & Stutzle, Thomas & Kanthak, Sebastian & Hightower, William L. & Samra, Harvind & Ding, Zhi & Guignard, Monique, 2008. "The quadratic three-dimensional assignment problem: Exact and approximate solution methods," European Journal of Operational Research, Elsevier, vol. 184(2), pages 416-428, January.
    7. Zvi Drezner & Peter Hahn & Éeric Taillard, 2005. "Recent Advances for the Quadratic Assignment Problem with Special Emphasis on Instances that are Difficult for Meta-Heuristic Methods," Annals of Operations Research, Springer, vol. 139(1), pages 65-94, October.
    8. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    9. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    10. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    11. Hao Hu & Renata Sotirov, 2020. "On Solving the Quadratic Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 219-233, April.
    12. Peter Hahn & J. MacGregor Smith & Yi-Rong Zhu, 2010. "The Multi-Story Space Assignment Problem," Annals of Operations Research, Springer, vol. 179(1), pages 77-103, September.
    13. Hao Hu & Renata Sotirov, 2018. "Special cases of the quadratic shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 754-777, April.
    14. Lucas A. Waddell & Jerry L. Phillips & Tianzhu Liu & Swarup Dhar, 2023. "An LP-based characterization of solvable QAP instances with chess-board and graded structures," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-23, July.
    15. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    16. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
    17. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    18. Adrien Durand & Timothé Watteau & Georges Ghazi & Ruxandra Mihaela Botez, 2024. "Generalized Shortest Path Problem: An Innovative Approach for Non-Additive Problems in Conditional Weighted Graphs," Mathematics, MDPI, vol. 12(19), pages 1-24, September.
    19. Ketan Date & Rakesh Nagi, 2019. "Level 2 Reformulation Linearization Technique–Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 771-789, October.
    20. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:307:y:2021:i:1:d:10.1007_s10479-021-04310-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.