IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v306y2023i1p358-369.html
   My bibliography  Save this article

A decomposition method for lasso problems with zero-sum constraint

Author

Listed:
  • Cristofari, Andrea

Abstract

In this paper, we consider lasso problems with zero-sum constraint, commonly required for the analysis of compositional data in high-dimensional spaces. A novel algorithm is proposed to solve these problems, combining a tailored active-set technique, to identify the zero variables in the optimal solution, with a 2-coordinate descent scheme. At every iteration, the algorithm chooses between two different strategies: the first one requires to compute the whole gradient of the smooth term of the objective function and is more accurate in the active-set estimate, while the second one only uses partial derivatives and is computationally more efficient. Global convergence to optimal solutions is proved and numerical results are provided on synthetic and real datasets, showing the effectiveness of the proposed method. The software is publicly available.

Suggested Citation

  • Cristofari, Andrea, 2023. "A decomposition method for lasso problems with zero-sum constraint," European Journal of Operational Research, Elsevier, vol. 306(1), pages 358-369.
  • Handle: RePEc:eee:ejores:v:306:y:2023:i:1:p:358-369
    DOI: 10.1016/j.ejor.2022.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722007585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    2. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
    3. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    4. A. Schwartz & E. Polak, 1997. "Family of Projected Descent Methods for Optimization Problems with Simple Bounds," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 1-31, January.
    5. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    6. Andrea Cristofari & Gianni Di Pillo & Giampaolo Liuzzi & Stefano Lucidi, 2022. "An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 300-323, June.
    7. Mishra, Aditya & Müller, Christian L., 2022. "Robust regression with compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    8. Jeon, Jong-June & Kim, Yongdai & Won, Sungho & Choi, Hosik, 2020. "Primal path algorithm for compositional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    9. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2022. "Minimization over the $$\ell _1$$ ℓ 1 -ball using an active-set non-monotone projected gradient," Computational Optimization and Applications, Springer, vol. 83(2), pages 693-721, November.
    10. Robert Tibshirani & Jacob Bien & Jerome Friedman & Trevor Hastie & Noah Simon & Jonathan Taylor & Ryan J. Tibshirani, 2012. "Strong rules for discarding predictors in lasso‐type problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 245-266, March.
    11. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2020. "An active-set algorithmic framework for non-convex optimization problems over the simplex," Computational Optimization and Applications, Springer, vol. 77(1), pages 57-89, September.
    12. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    13. Patrick L. Combettes & Christian L. Müller, 2021. "Regression Models for Compositional Data: General Log-Contrast Formulations, Proximal Optimization, and Microbiome Data Applications," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 217-242, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    2. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    3. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2022. "Minimization over the $$\ell _1$$ ℓ 1 -ball using an active-set non-monotone projected gradient," Computational Optimization and Applications, Springer, vol. 83(2), pages 693-721, November.
    4. Michoel, Tom, 2016. "Natural coordinate descent algorithm for L1-penalised regression in generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 60-70.
    5. A. Ghaffari-Hadigheh & L. Sinjorgo & R. Sotirov, 2024. "On convergence of a q-random coordinate constrained algorithm for non-convex problems," Journal of Global Optimization, Springer, vol. 90(4), pages 843-868, December.
    6. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    7. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    8. Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
    9. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    10. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    11. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    12. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    13. Omer, E. & Guetta, R. & Ioslovich, I. & Gutman, P.O. & Borshchevsky, M., 2008. "“Energy Tower” combined with pumped storage and desalination: Optimal design and analysis," Renewable Energy, Elsevier, vol. 33(4), pages 597-607.
    14. Arulsamy, Karen & Delaney, Liam, 2022. "The impact of automatic enrolment on the mental health gap in pension participation: Evidence from the UK," Journal of Health Economics, Elsevier, vol. 86(C).
    15. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    16. Barbaglia, Luca & Wilms, Ines & Croux, Christophe, 2016. "Commodity dynamics: A sparse multi-class approach," Energy Economics, Elsevier, vol. 60(C), pages 62-72.
    17. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    18. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    19. Ion Necoara & Yurii Nesterov & François Glineur, 2017. "Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
    20. Fang, Kuangnan & Wang, Xiaoyan & Shia, Ben-Chang & Ma, Shuangge, 2016. "Identification of proportionality structure with two-part models using penalization," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 12-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:306:y:2023:i:1:p:358-369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.