IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v68y2017i1d10.1007_s10589-017-9907-8.html
   My bibliography  Save this article

A comparison of reduced and unreduced KKT systems arising from interior point methods

Author

Listed:
  • Benedetta Morini

    (Università degli Studi di Firenze)

  • Valeria Simoncini

    (Dipartimento di Matematica, Università di Bologna)

  • Mattia Tani

    (Università di Pavia)

Abstract

We address the iterative solution of KKT systems arising in the solution of convex quadratic programming problems. Two strictly related and well established formulations for such systems are studied with particular emphasis on the effect of preconditioning strategies on their relation. Constraint and augmented preconditioners are considered, and the choice of the augmentation matrix is discussed. A theoretical and experimental analysis is conducted to assess which of the two formulations should be preferred for solving large-scale problems.

Suggested Citation

  • Benedetta Morini & Valeria Simoncini & Mattia Tani, 2017. "A comparison of reduced and unreduced KKT systems arising from interior point methods," Computational Optimization and Applications, Springer, vol. 68(1), pages 1-27, September.
  • Handle: RePEc:spr:coopap:v:68:y:2017:i:1:d:10.1007_s10589-017-9907-8
    DOI: 10.1007/s10589-017-9907-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9907-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9907-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Bellavia, 1998. "Inexact Interior-Point Method," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 109-121, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    2. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    3. David Ek & Anders Forsgren, 2023. "A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming," Computational Optimization and Applications, Springer, vol. 86(1), pages 1-48, September.
    4. Benedetta Morini & Valeria Simoncini, 2017. "Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 450-477, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    2. David Ek & Anders Forsgren, 2023. "A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming," Computational Optimization and Applications, Springer, vol. 86(1), pages 1-48, September.
    3. C. Durazzi, 2000. "On the Newton Interior-Point Method for Nonlinear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 104(1), pages 73-90, January.
    4. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    5. Benedetta Morini & Valeria Simoncini, 2017. "Stability and Accuracy of Inexact Interior Point Methods for Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 450-477, November.
    6. Dominik Garmatter & Margherita Porcelli & Francesco Rinaldi & Martin Stoll, 2023. "An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations," Computational Optimization and Applications, Springer, vol. 84(1), pages 191-223, January.
    7. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    8. Mohammadhossein Mohammadisiahroudi & Ramin Fakhimi & Tamás Terlaky, 2024. "Efficient Use of Quantum Linear System Algorithms in Inexact Infeasible IPMs for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 146-183, July.
    9. G. Al-Jeiroudi & J. Gondzio, 2009. "Convergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 231-247, May.
    10. Paul Armand & Joël Benoist & Jean-Pierre Dussault, 2012. "Local path-following property of inexact interior methods in nonlinear programming," Computational Optimization and Applications, Springer, vol. 52(1), pages 209-238, May.
    11. C. Durazzi & V. Ruggiero & G. Zanghirati, 2001. "Parallel Interior-Point Method for Linear and Quadratic Programs with Special Structure," Journal of Optimization Theory and Applications, Springer, vol. 110(2), pages 289-313, August.
    12. Md Sarowar Morshed & Md Saiful Islam & Md. Noor-E-Alam, 2020. "Accelerated sampling Kaczmarz Motzkin algorithm for the linear feasibility problem," Journal of Global Optimization, Springer, vol. 77(2), pages 361-382, June.
    13. Jacek Gondzio, 2012. "Matrix-free interior point method," Computational Optimization and Applications, Springer, vol. 51(2), pages 457-480, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:68:y:2017:i:1:d:10.1007_s10589-017-9907-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.