IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v187y2008i3p1494-1503.html
   My bibliography  Save this article

Constrained 0-1 quadratic programming: Basic approaches and extensions

Author

Listed:
  • Caprara, Alberto

Abstract

No abstract is available for this item.

Suggested Citation

  • Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
  • Handle: RePEc:eee:ejores:v:187:y:2008:i:3:p:1494-1503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(06)00859-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Warren P. Adams & Hanif D. Sherali, 1986. "A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems," Management Science, INFORMS, vol. 32(10), pages 1274-1290, October.
    2. Billionnet, Alain & Calmels, Frederic, 1996. "Linear programming for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 92(2), pages 310-325, July.
    3. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    4. Alberto Caprara & Matteo Fischetti & Paolo Toth, 1999. "A Heuristic Method for the Set Covering Problem," Operations Research, INFORMS, vol. 47(5), pages 730-743, October.
    5. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    6. Mauricio G. C. Resende & K. G. Ramakrishnan & Zvi Drezner, 1995. "Computing Lower Bounds for the Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming," Operations Research, INFORMS, vol. 43(5), pages 781-791, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    2. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
    3. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    4. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    5. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    6. Richard J. Forrester & Warren P. Adams & Paul T. Hadavas, 2010. "Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 1-12, February.
    7. Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams, Warren P. & Guignard, Monique & Hahn, Peter M. & Hightower, William L., 2007. "A level-2 reformulation-linearization technique bound for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 983-996, August.
    2. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    3. Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
    4. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    5. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    6. Sven Mallach, 2021. "Inductive linearization for binary quadratic programs with linear constraints," 4OR, Springer, vol. 19(4), pages 549-570, December.
    7. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    8. Vittorio Maniezzo, 1999. "Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 358-369, November.
    9. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    10. W. David Pisinger & Anders Bo Rasmussen & Rune Sandvik, 2007. "Solution of Large Quadratic Knapsack Problems Through Aggressive Reduction," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 280-290, May.
    11. Hahn, Peter M. & Kim, Bum-Jin & Stutzle, Thomas & Kanthak, Sebastian & Hightower, William L. & Samra, Harvind & Ding, Zhi & Guignard, Monique, 2008. "The quadratic three-dimensional assignment problem: Exact and approximate solution methods," European Journal of Operational Research, Elsevier, vol. 184(2), pages 416-428, January.
    12. Ramachandran, Bala & Pekny, J. F., 1998. "Lower bounds for nonlinear assignment problems using many body interactions," European Journal of Operational Research, Elsevier, vol. 105(1), pages 202-215, February.
    13. Vicky Mak & Tommy Thomadsen, 2006. "Polyhedral combinatorics of the cardinality constrained quadratic knapsack problem and the quadratic selective travelling salesman problem," Journal of Combinatorial Optimization, Springer, vol. 11(4), pages 421-434, June.
    14. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    15. Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.
    16. Jesus Cunha & Luidi Simonetti & Abilio Lucena, 2016. "Lagrangian heuristics for the Quadratic Knapsack Problem," Computational Optimization and Applications, Springer, vol. 63(1), pages 97-120, January.
    17. Alain Billionnet & Éric Soutif, 2004. "Using a Mixed Integer Programming Tool for Solving the 0–1 Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 188-197, May.
    18. Monique Guignard & Aykut Ahlatcioglu, 2021. "The convex hull heuristic for nonlinear integer programming problems with linear constraints and application to quadratic 0–1 problems," Journal of Heuristics, Springer, vol. 27(1), pages 251-265, April.
    19. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    20. Billionnet, Alain & Soutif, Eric, 2004. "An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 157(3), pages 565-575, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:187:y:2008:i:3:p:1494-1503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.