IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v142y2006i1p147-16410.1007-s10479-006-6166-y.html
   My bibliography  Save this article

Some insights into the solution algorithms for SLP problems

Author

Listed:
  • Peter Kall
  • János Mayer

Abstract

We consider classes of stochastic linear programming problems which can be efficiently solved by deterministic algorithms. For two–stage recourse problems we identify two such classes. The first one consists of problems where the number of stochastically independent random variables is relatively low; the second class is the class of simple recourse problems. The proposed deterministic algorithm is successive discrete approximation. We also illustrate the impact of required accuracy on the efficiency of this algorithm. For jointly chance constrained problems with a random right–hand–side and multivariate normal distribution we demonstrate the increase in efficiency when lower accuracy is required, for a central cutting plane method. We support our argumentation and findings with computational results. Copyright Springer Science + Business Media, Inc. 2006

Suggested Citation

  • Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
  • Handle: RePEc:spr:annopr:v:142:y:2006:i:1:p:147-164:10.1007/s10479-006-6166-y
    DOI: 10.1007/s10479-006-6166-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-6166-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-6166-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Kall & János Mayer, 2005. "Stochastic Linear Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-24440-2, April.
    2. Gondzio, Jacek, 1995. "HOPDM (version 2.12) -- A fast LP solver based on a primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 85(1), pages 221-225, August.
    3. Vlerk, Maarten H. van der, 2002. "On multiple simple recourse models," Research Report 02A06, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    4. repec:dgr:rugsom:02a06 is not listed on IDEAS
    5. Gilbert Laporte & François Louveaux & Hélène Mercure, 1992. "The Vehicle Routing Problem with Stochastic Travel Times," Transportation Science, INFORMS, vol. 26(3), pages 161-170, August.
    6. Julia L. Higle & Suvrajeet Sen, 1991. "Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 650-669, August.
    7. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ketabchi, Saeed & Behboodi-Kahoo, Malihe, 2015. "Augmented Lagrangian method within L-shaped method for stochastic linear programs," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 12-20.
    2. Gyana R. Parija & Shabbir Ahmed & Alan J. King, 2004. "On Bridging the Gap Between Stochastic Integer Programming and MIP Solver Technologies," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 73-83, February.
    3. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    4. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    5. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Other publications TiSEM a03f895f-b941-41a9-84e0-b, Tilburg University, School of Economics and Management.
    6. Soyster, A.L. & Murphy, F.H., 2017. "Data driven matrix uncertainty for robust linear programming," Omega, Elsevier, vol. 70(C), pages 43-57.
    7. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
    8. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    9. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    10. N. Edirisinghe & E. Patterson, 2007. "Multi-period stochastic portfolio optimization: Block-separable decomposition," Annals of Operations Research, Springer, vol. 152(1), pages 367-394, July.
    11. Emmanuel Fragnière & Jacek Gondzio & Robert Sarkissian & Jean-Philippe Vial, 2000. "A Structure-Exploiting Tool in Algebraic Modeling Languages," Management Science, INFORMS, vol. 46(8), pages 1145-1158, August.
    12. Postek, Krzysztof & Romeijnders, Ward & den Hertog, Dick & van der Vlerk, Maartne H., 2016. "Efficient Methods for Several Classes of Ambiguous Stochastic Programming Problems under Mean-MAD Information," Discussion Paper 2016-039, Tilburg University, Center for Economic Research.
    13. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
    14. Cosmin G. Petra & Florian A. Potra, 2019. "A homogeneous model for monotone mixed horizontal linear complementarity problems," Computational Optimization and Applications, Springer, vol. 72(1), pages 241-267, January.
    15. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    16. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    17. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    18. Riis, Morten & Andersen, Kim Allan, 2005. "Applying the minimax criterion in stochastic recourse programs," European Journal of Operational Research, Elsevier, vol. 165(3), pages 569-584, September.
    19. Stojkovic, Nebojsa V. & Stanimirovic, Predrag S., 2001. "Two direct methods in linear programming," European Journal of Operational Research, Elsevier, vol. 131(2), pages 417-439, June.
    20. Xiaotie Chen & David L. Woodruff, 2024. "Distributions and bootstrap for data-based stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:142:y:2006:i:1:p:147-164:10.1007/s10479-006-6166-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.