On L1-Norm Multiclass Support Vector Machines: Methodology and Theory
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
- Fan, Yiwei & Zhao, Junlong, 2022. "Safe sample screening rules for multicategory angle-based support vector machines," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
- Ling Peng & Xiaohui Liu & Xiangyong Tan & Yiweng Zhou & Shihua Luo, 2024. "The statistical rate for support matrix machines under low rankness and row (column) sparsity," Statistical Papers, Springer, vol. 65(7), pages 4567-4598, September.
- Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Luis M. Briceño-Arias & Giovanni Chierchia & Emilie Chouzenoux & Jean-Christophe Pesquet, 2019. "A random block-coordinate Douglas–Rachford splitting method with low computational complexity for binary logistic regression," Computational Optimization and Applications, Springer, vol. 72(3), pages 707-726, April.
- Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
- Tang, Shijie & Chen, Lisha & Tsui, Kam-Wah & Doksum, Kjell, 2014. "Nonparametric variable selection and classification: The CATCH algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 158-175.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:102:y:2007:m:june:p:583-594. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.