On solving difference of convex functions programs with linear complementarity constraints
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-023-00487-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hoai Le Thi & Mahdi Moeini & Tao Pham Dinh & Joaquim Judice, 2012. "A DC programming approach for solving the symmetric Eigenvalue Complementarity Problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1097-1117, April.
- Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
- Hoai Le Thi & Tao Pham Dinh, 2011. "On solving Linear Complementarity Problems by DC programming and DCA," Computational Optimization and Applications, Springer, vol. 50(3), pages 507-524, December.
- G.H. Lin & M. Fukushima, 2003. "Some Exact Penalty Results for Nonlinear Programs and Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 118(1), pages 67-80, July.
- Jing Hu & John Mitchell & Jong-Shi Pang & Bin Yu, 2012. "On linear programs with linear complementarity constraints," Journal of Global Optimization, Springer, vol. 53(1), pages 29-51, May.
- Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
- C. Audet & G. Savard & W. Zghal, 2007. "New Branch-and-Cut Algorithm for Bilevel Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 353-370, August.
- Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
- Gui-Hua Lin & Masao Fukushima, 2005. "A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints," Annals of Operations Research, Springer, vol. 133(1), pages 63-84, January.
- Hoai Le Thi & Tao Pham Dinh & Huynh Ngai, 2012. "Exact penalty and error bounds in DC programming," Journal of Global Optimization, Springer, vol. 52(3), pages 509-535, March.
- X. M. Hu & D. Ralph, 2004. "Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 123(2), pages 365-390, November.
- G. S. Liu & J. J. Ye, 2007. "Merit-Function Piecewise SQP Algorithm for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 623-641, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
- Jong-Shi Pang & Meisam Razaviyayn & Alberth Alvarado, 2017. "Computing B-Stationary Points of Nonsmooth DC Programs," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 95-118, January.
- Giandomenico Mastroeni & Letizia Pellegrini & Alberto Peretti, 2021. "Some numerical aspects on a method for solving linear problems with complementarity constraints," Working Papers 16/2021, University of Verona, Department of Economics.
- Christian Kanzow & Alexandra Schwartz, 2015. "The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited," Mathematics of Operations Research, INFORMS, vol. 40(2), pages 253-275, February.
- H. Z. Luo & X. L. Sun & Y. F. Xu, 2010. "Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 489-506, June.
- Suhong Jiang & Jin Zhang & Caihua Chen & Guihua Lin, 2018. "Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints," Journal of Global Optimization, Springer, vol. 70(1), pages 223-236, January.
- Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
- Le Thi, H.A. & Pham Dinh, T. & Le, H.M. & Vo, X.T., 2015. "DC approximation approaches for sparse optimization," European Journal of Operational Research, Elsevier, vol. 244(1), pages 26-46.
- Na Xu & Xide Zhu & Li-Ping Pang & Jian Lv, 2018. "Improved Convergence Properties of the Relaxation Schemes of Kadrani et al. and Kanzow and Schwartz for MPEC," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-20, February.
- Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
- Filippo Pecci & Edo Abraham & Ivan Stoianov, 2017. "Penalty and relaxation methods for the optimal placement and operation of control valves in water supply networks," Computational Optimization and Applications, Springer, vol. 67(1), pages 201-223, May.
- Winterfeld, Anton, 2008. "Application of general semi-infinite programming to lapidary cutting problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 838-854, December.
- Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
- M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
- Daniel Ralph & Oliver Stein, 2011. "The C-Index: A New Stability Concept for Quadratic Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(3), pages 504-526, August.
- Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
- Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
- H. Luo & X. Sun & Y. Xu & H. Wu, 2010. "On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints," Journal of Global Optimization, Springer, vol. 46(2), pages 217-232, February.
- Jean-Pierre Dussault & Mounir Haddou & Abdeslam Kadrani & Tangi Migot, 2020. "On Approximate Stationary Points of the Regularized Mathematical Program with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 504-522, August.
- Meng Xu & Guangmin Wang & Susan Grant-Muller & Ziyou Gao, 2017. "Joint road toll pricing and capacity development in discrete transport network design problem," Transportation, Springer, vol. 44(4), pages 731-752, July.
More about this item
Keywords
Mathematical program with linear complementarity constraints; Difference of convex functions programming; Difference of convex functions algorithm; Difference of convex functions constraints; Penalty function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:1:d:10.1007_s10589-023-00487-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.