IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i1d10.1007_s10589-017-9941-6.html
   My bibliography  Save this article

An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization

Author

Listed:
  • Jianjun Liu

    (China University of Petroleum)

  • Xiangmin Xu

    (China University of Petroleum)

  • Xuehui Cui

    (China University of Petroleum)

Abstract

Trust region method is a robust method for optimization problems. In this paper, we propose a novel adaptive nonmonotone technique based on trust region methods for solving unconstrained optimization. In order to accelerate the convergence of trust region methods, an adaptive trust region is generated according to the Hessian of the iterate point. Both the nonmonotone techniques and this adaptive strategies can improve the trust region methods in the sense of convergence. We prove that the proposed method is locally superlinear convergence under some standard assumptions. Numerical results show that the new method is effective and has a high speed of convergence in practice.

Suggested Citation

  • Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9941-6
    DOI: 10.1007/s10589-017-9941-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9941-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9941-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    2. Zhaocheng Cui & Boying Wu, 2012. "A new modified nonmonotone adaptive trust region method for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 795-806, December.
    3. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    4. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    5. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ahmadvand & M. Esmaeilbeigi & A. Kamandi & F. M. Yaghoobi, 2019. "A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques," Computational Optimization and Applications, Springer, vol. 72(2), pages 499-524, March.
    2. Liu, Jianjun & Zhai, Rui & Liu, Yuhan & Li, Wenliang & Wang, Bingzhe & Huang, Liyuan, 2021. "A quasi fractional order gradient descent method with adaptive stepsize and its application in system identification," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    3. Mingming Xu & Quanxin Zhu & Hongying Xiao, 2024. "An Improved Non-Monotonic Adaptive Trust Region Algorithm for Unconstrained Optimization," Mathematics, MDPI, vol. 12(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    2. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    3. D. Ataee Tarzanagh & M. Reza Peyghami & F. Bastin, 2015. "A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 676-692, November.
    4. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    5. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    6. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    7. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    8. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    9. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    10. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    11. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    12. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
    13. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    14. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    15. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    16. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    17. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    18. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    19. Wei Bian & Xiaojun Chen, 2017. "Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1063-1084, November.
    20. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9941-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.