IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v285y2016icp79-93.html
   My bibliography  Save this article

A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence

Author

Listed:
  • Chen, Liang

Abstract

Fan (2014) presented an accelerated modified Levenberg–Marquardt method for nonlinear equations. At every iteration, the accelerated modified LM method computed not only a LM trial step, but also an additional approximate LM step which employed a line search. In this paper, based on the accelerated modified LM method, we compute the approximate LM step one more time at every iteration, and obtain a high-order accelerating modified Levenberg–Marquardt method. Under the local error bound condition which is weaker than nonsingularity, the convergence order of this new method is shown to be fourth. A globally convergence is also given by the trust region technique. Numerical results show that the new method is efficient and could save many calculations of the Jacobian.

Suggested Citation

  • Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
  • Handle: RePEc:eee:apmaco:v:285:y:2016:i:c:p:79-93
    DOI: 10.1016/j.amc.2016.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316302314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqi Yan & Shisheng Zhong & Lin Lin & Zhiquan Cui, 2021. "Adaptive Levenberg–Marquardt Algorithm: A New Optimization Strategy for Levenberg–Marquardt Neural Networks," Mathematics, MDPI, vol. 9(17), pages 1-17, September.
    2. Alexey V. Shkirin & Sergey N. Chirikov & Nikolai V. Suyazov & Veronika E. Reut & Daria V. Grigorieva & Irina V. Gorudko & Vadim I. Bruskov & Sergey V. Gudkov, 2022. "Modeling the Kinetics of the Singlet Oxygen Effect in Aqueous Solutions of Proteins Exposed to Thermal and Laser Radiation," Mathematics, MDPI, vol. 10(22), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    4. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    5. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    6. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    7. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    8. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    9. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    10. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    11. Abolfazl Gharaei & Alireza Amjadian & Ali Shavandi & Amir Amjadian, 2023. "An augmented Lagrangian approach with general constraints to solve nonlinear models of the large-scale reliable inventory systems," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-37, March.
    12. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    13. F. Aragón Artacho & A. Belyakov & A. Dontchev & M. López, 2014. "Local convergence of quasi-Newton methods under metric regularity," Computational Optimization and Applications, Springer, vol. 58(1), pages 225-247, May.
    14. Hamid Esmaeili & Morteza Kimiaei, 2016. "A trust-region method with improved adaptive radius for systems of nonlinear equations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 109-125, February.
    15. Lijuan Zhao & Wenyu Sun, 2013. "A Conic Affine Scaling Dogleg Method For Nonlinear Optimization With Bound Constraints," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 30(03), pages 1-30.
    16. Luis Miguel Pérez Archila & Juan David Bastidas-Rodríguez & Rodrigo Correa & Luz Adriana Trejos Grisales & Daniel Gonzalez-Montoya, 2020. "A Solution of Implicit Model of Series-Parallel Photovoltaic Arrays by Using Deterministic and Metaheuristic Global Optimization Algorithms," Energies, MDPI, vol. 13(4), pages 1-22, February.
    17. Amin Fahs & Hassane Fahs & R. Dehghani, 2022. "Optimal Scaling Parameters for Spectral Conjugate Gradient Methods," SN Operations Research Forum, Springer, vol. 3(2), pages 1-13, June.
    18. Liu, Jun & Fu, Hongfei & Zhang, Jiansong, 2020. "A QSC method for fractional subdiffusion equations with fractional boundary conditions and its application in parameters identification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 153-174.
    19. Saman Babaie-Kafaki & Reza Ghanbari, 2016. "Descent Symmetrization of the Dai–Liao Conjugate Gradient Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-10, April.
    20. Na Huang, 2022. "On R-linear convergence analysis for a class of gradient methods," Computational Optimization and Applications, Springer, vol. 81(1), pages 161-177, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:285:y:2016:i:c:p:79-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.