IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v167y2015i2d10.1007_s10957-015-0790-0.html
   My bibliography  Save this article

A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems

Author

Listed:
  • D. Ataee Tarzanagh

    (K.N. Toosi University of Technology)

  • M. Reza Peyghami

    (K.N. Toosi University of Technology
    K.N. Toosi University of Technology)

  • F. Bastin

    (Université de Montréal)

Abstract

In this paper, we propose a new nonmonotone adaptive retrospective Trust Region (TR) method for solving unconstrained optimization problems. Inspired by the retrospective ratio proposed in Bastin et al. (Math Program Ser A 123:395–418, 2010), a new nonmonotone TR ratio is introduced based on a convex combination of the nonmonotone classical and retrospective ratios. Due to the value of the new ratio, the TR radius is updated adaptively by a variant of the rule as proposed in Shi and Guo (J Comput Appl Math 213:509–520, 2008). Global convergence property of the new algorithm, as well as its superlinear convergence rate, is established under some standard assumptions. Numerical results on some test problems show the efficiency and effectiveness of the new method in practice, too.

Suggested Citation

  • D. Ataee Tarzanagh & M. Reza Peyghami & F. Bastin, 2015. "A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 676-692, November.
  • Handle: RePEc:spr:joptap:v:167:y:2015:i:2:d:10.1007_s10957-015-0790-0
    DOI: 10.1007/s10957-015-0790-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0790-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0790-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    2. Zhaocheng Cui & Boying Wu, 2012. "A new modified nonmonotone adaptive trust region method for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 795-806, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    2. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    3. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    4. Xianfeng Ding & Quan Qu & Xinyi Wang, 2021. "A modified filter nonmonotone adaptive retrospective trust region method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:167:y:2015:i:2:d:10.1007_s10957-015-0790-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.