IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v61y2015i2p321-341.html
   My bibliography  Save this article

A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems

Author

Listed:
  • M. Reza Peyghami
  • D. Ataee Tarzanagh

Abstract

In this paper, we present a new relaxed nonmonotone trust region method with adaptive radius for solving unconstrained optimization problems. The proposed method combines a relaxed nonmonotone technique with a modified version of the adaptive trust region strategy proposed by Shi and Guo (J Comput Appl Math 213:509–520, 2008 ). Under some suitable and standard assumptions, we establish the global convergence property as well as the superlinear convergence rate for the new method. Numerical results on some test problems show the efficiency and effectiveness of the new proposed method in practice. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
  • Handle: RePEc:spr:coopap:v:61:y:2015:i:2:p:321-341
    DOI: 10.1007/s10589-015-9726-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9726-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9726-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. H. Dai, 2002. "On the Nonmonotone Line Search," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 315-330, February.
    2. Zhaocheng Cui & Boying Wu, 2012. "A new modified nonmonotone adaptive trust region method for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 795-806, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Ataee Tarzanagh & M. Reza Peyghami & F. Bastin, 2015. "A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 676-692, November.
    2. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    2. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    3. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    4. Giulia Ferrandi & Michiel E. Hochstenbach & Nataša Krejić, 2023. "A harmonic framework for stepsize selection in gradient methods," Computational Optimization and Applications, Springer, vol. 85(1), pages 75-106, May.
    5. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    6. Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
    7. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    8. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.
    9. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    10. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    11. Livieris, Ioannis E. & Pintelas, Panagiotis, 2015. "A new class of nonmonotone conjugate gradient training algorithms," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 404-413.
    12. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
    13. Jiao Li & Yu-Fei Yang & Bo Yu, 2012. "A nonmonotone PSB algorithm for solving unconstrained optimization," Computational Optimization and Applications, Springer, vol. 52(1), pages 267-280, May.
    14. Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
    15. Xianfeng Ding & Quan Qu & Xinyi Wang, 2021. "A modified filter nonmonotone adaptive retrospective trust region method," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-16, June.
    16. D. Ataee Tarzanagh & M. Reza Peyghami & F. Bastin, 2015. "A New Nonmonotone Adaptive Retrospective Trust Region Method for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 676-692, November.
    17. M. Fatemi & N. Mahdavi-Amiri, 2012. "A filter trust-region algorithm for unconstrained optimization with strong global convergence properties," Computational Optimization and Applications, Springer, vol. 52(1), pages 239-266, May.
    18. O. P. Ferreira & M. Lemes & L. F. Prudente, 2022. "On the inexact scaled gradient projection method," Computational Optimization and Applications, Springer, vol. 81(1), pages 91-125, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:61:y:2015:i:2:p:321-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.