IDEAS home Printed from https://ideas.repec.org/p/aeg/report/2017-05.html
   My bibliography  Save this paper

Exploiting damped techniques for nonlinear conjugate gradient methods

Author

Listed:
  • Mehiddin Al-Baali

    (Department of Mathematics and Statistics Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman)

  • Andrea Caliciotti

    (Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), University of Rome La Sapienza, Rome, Italy)

  • Giovanni Fasano

    (Department of Management University Ca' Foscari of Venice; S. Giobbe, Cannaregio 873 - 30121 Venice, Italy)

  • Massimo Roma

    (Department of Computer, Control and Management Engineering Antonio Ruberti (DIAG), University of Rome La Sapienza, Rome, Italy)

Abstract

In this paper we propose the use of damped techniques within Nonlinear Conjugate Gradient (NCG) methods. Damped techniques were introduced by Powell and recently reproposed by Al-Baali and till now, only applied in the framework of quasi{Newton methods. We extend their use to NCG methods in large scale unconstrained optimization, aiming at possibly improving the efficiency and the robustness of the latter methods, especially when solving difficult problems. We consider both unpreconditioned and Pre-conditioned NCG (PNCG). In the latter case, we embed damped techniques within a class of preconditioners based on quasi-Newton updates. Our purpose is to possibly provide efficient preconditioners which approximate, in some sense, the inverse of the Hessian matrix, while still preserving information provided by the secant equation or some of its modifications. The results of an extensive numerical experience highlights that the proposed approach is quite promising.

Suggested Citation

  • Mehiddin Al-Baali & Andrea Caliciotti & Giovanni Fasano & Massimo Roma, 2017. "Exploiting damped techniques for nonlinear conjugate gradient methods," DIAG Technical Reports 2017-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  • Handle: RePEc:aeg:report:2017-05
    as

    Download full text from publisher

    File URL: http://www.dis.uniroma1.it/~bibdis/RePEc/aeg/report/2017-05.pdf
    File Function: First version, 2017
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    2. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    3. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    4. Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.
    5. Mehiddin Al-Baali & Lucio Grandinetti & Ornella Pisacane, 2014. "Damped Techniques for the Limited Memory BFGS Method for Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 688-699, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caliciotti, Andrea & Fasano, Giovanni & Roma, Massimo, 2018. "Preconditioned Nonlinear Conjugate Gradient methods based on a modified secant equation," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 196-214.
    2. Giovanni Fasano & Massimo Roma, 2016. "A novel class of approximate inverse preconditioners for large positive definite linear systems in optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 399-429, November.
    3. Andrea Caliciotti & Giovanni Fasano & Florian Potra & Massimo Roma, 2020. "Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation," Computational Optimization and Applications, Springer, vol. 77(3), pages 627-651, December.
    4. Andrzej Stachurski, 2017. "On a conjugate directions method for solving strictly convex QP problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 523-548, December.
    5. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    6. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    7. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    8. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    9. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
    10. Giovanni Fasano, 2015. "A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 883-914, March.
    11. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    12. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    13. S. Bojari & M. R. Eslahchi, 2020. "Global convergence of a family of modified BFGS methods under a modified weak-Wolfe–Powell line search for nonconvex functions," 4OR, Springer, vol. 18(2), pages 219-244, June.
    14. M. Ahmadvand & M. Esmaeilbeigi & A. Kamandi & F. M. Yaghoobi, 2019. "A novel hybrid trust region algorithm based on nonmonotone and LOOCV techniques," Computational Optimization and Applications, Springer, vol. 72(2), pages 499-524, March.
    15. Nicolas Boutet & Rob Haelterman & Joris Degroote, 2021. "Secant Update generalized version of PSB: a new approach," Computational Optimization and Applications, Springer, vol. 78(3), pages 953-982, April.
    16. E. G. Birgin & J. L. Gardenghi & J. M. Martínez & S. A. Santos, 2021. "On the solution of linearly constrained optimization problems by means of barrier algorithms," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 417-441, July.
    17. Andrea Cristofari & Gianni Di Pillo & Giampaolo Liuzzi & Stefano Lucidi, 2022. "An Augmented Lagrangian Method Exploiting an Active-Set Strategy and Second-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 300-323, June.
    18. Nicholas I. M. Gould & Daniel P. Robinson, 2017. "A dual gradient-projection method for large-scale strictly convex quadratic problems," Computational Optimization and Applications, Springer, vol. 67(1), pages 1-38, May.
    19. Charles Audet & Kwassi Joseph Dzahini & Michael Kokkolaras & Sébastien Le Digabel, 2021. "Stochastic mesh adaptive direct search for blackbox optimization using probabilistic estimates," Computational Optimization and Applications, Springer, vol. 79(1), pages 1-34, May.
    20. Jae Hwa Lee & Yoon Mo Jung & Ya-xiang Yuan & Sangwoon Yun, 2019. "A subspace SQP method for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 177-194, September.

    More about this item

    Keywords

    Large scale unconstrained optimization ; Nonlinear Conjugate Gradient methods ; quasi-Newton updates ; damped techniques;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeg:report:2017-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonietta Angelica Zucconi (email available below). General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.