IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i3d10.1007_s10589-019-00129-2.html
   My bibliography  Save this article

Non-monotone inexact restoration method for nonlinear programming

Author

Listed:
  • Juliano B. Francisco

    (Universidade Federal de Santa Catarina)

  • Douglas S. Gonçalves

    (Universidade Federal de Santa Catarina)

  • Fermín S. V. Bazán

    (Universidade Federal de Santa Catarina)

  • Lila L. T. Paredes

    (Universidad Nacional Mayor de San Marcos)

Abstract

This paper deals with a new variant of the inexact restoration method of Fischer and Friedlander (Comput Optim Appl 46:333–346, 2010) for nonlinear programming. We propose an algorithm that replaces the monotone line search performed in the tangent phase by a non-monotone one, using the sharp Lagrangian as merit function. Convergence to feasible points satisfying the convex approximate gradient projection condition is proved under mild assumptions. Numerical results on representative test problems show that the proposed approach outperforms the monotone version when a suitable non-monotone parameter is chosen and is also competitive against other globalization strategies for inexact restoration.

Suggested Citation

  • Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-019-00129-2
    DOI: 10.1007/s10589-019-00129-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00129-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00129-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. H. Dai, 2002. "On the Nonmonotone Line Search," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 315-330, February.
    2. Elizabeth Karas & Elvio Pilotta & Ademir Ribeiro, 2009. "Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres problems," Computational Optimization and Applications, Springer, vol. 44(3), pages 427-441, December.
    3. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    4. Andreas Fischer & Ana Friedlander, 2010. "A new line search inexact restoration approach for nonlinear programming," Computational Optimization and Applications, Springer, vol. 46(2), pages 333-346, June.
    5. R. Andreani & S. Castro & J. Chela & A. Friedlander & S. Santos, 2009. "An inexact-restoration method for nonlinear bilevel programming problems," Computational Optimization and Applications, Springer, vol. 43(3), pages 307-328, July.
    6. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. F. Bueno & G. Haeser & J. M. Martínez, 2015. "A Flexible Inexact-Restoration Method for Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 188-208, April.
    2. E. G. Birgin & L. F. Bueno & J. M. Martínez, 2016. "Sequential equality-constrained optimization for nonlinear programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 699-721, December.
    3. Nahid Banihashemi & C. Yalçın Kaya, 2013. "Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 726-760, March.
    4. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    5. Roberto Andreani & José Mario Martínez & Alberto Ramos & Paulo J. S. Silva, 2018. "Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 693-717, August.
    6. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    7. Gabriel Haeser & Alberto Ramos, 2020. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 469-487, November.
    8. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    9. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    10. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.
    11. Hecheng Li, 2015. "A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems," Annals of Operations Research, Springer, vol. 235(1), pages 543-558, December.
    12. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    13. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.
    14. Giulia Ferrandi & Michiel E. Hochstenbach & Nataša Krejić, 2023. "A harmonic framework for stepsize selection in gradient methods," Computational Optimization and Applications, Springer, vol. 85(1), pages 75-106, May.
    15. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    16. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    17. Gaoxi Li & Zhongping Wan, 2018. "On Bilevel Programs with a Convex Lower-Level Problem Violating Slater’s Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 820-837, December.
    18. Gabriel Haeser, 2018. "A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms," Computational Optimization and Applications, Springer, vol. 70(2), pages 615-639, June.
    19. Christian Kanzow & Andreas B. Raharja & Alexandra Schwartz, 2021. "Sequential optimality conditions for cardinality-constrained optimization problems with applications," Computational Optimization and Applications, Springer, vol. 80(1), pages 185-211, September.
    20. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-019-00129-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.