IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp404-413.html
   My bibliography  Save this article

A new class of nonmonotone conjugate gradient training algorithms

Author

Listed:
  • Livieris, Ioannis E.
  • Pintelas, Panagiotis

Abstract

In this paper, we propose a new class of conjugate gradient algorithms for training neural networks which is based on a new modified nonmonotone scheme proposed by Shi and Wang (2011). The utilization of a nonmonotone strategy enables the training algorithm to overcome the case where the sequence of iterates runs into the bottom of a curved narrow valley, a common occurrence in neural network training process. Our proposed class of methods ensures sufficient descent, avoiding thereby the usual inefficient restarts and it is globally convergent under mild conditions. Our experimental results provide evidence that the proposed nonmonotone conjugate gradient training methods are efficient, outperforming classical methods, proving more stable, efficient and reliable learning.

Suggested Citation

  • Livieris, Ioannis E. & Pintelas, Panagiotis, 2015. "A new class of nonmonotone conjugate gradient training algorithms," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 404-413.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:404-413
    DOI: 10.1016/j.amc.2015.05.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315006773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. H. Dai, 2002. "On the Nonmonotone Line Search," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 315-330, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    2. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    3. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    4. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    5. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    6. Jiao Li & Yu-Fei Yang & Bo Yu, 2012. "A nonmonotone PSB algorithm for solving unconstrained optimization," Computational Optimization and Applications, Springer, vol. 52(1), pages 267-280, May.
    7. O. P. Ferreira & M. Lemes & L. F. Prudente, 2022. "On the inexact scaled gradient projection method," Computational Optimization and Applications, Springer, vol. 81(1), pages 91-125, January.
    8. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    9. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    10. Giulia Ferrandi & Michiel E. Hochstenbach & Nataša Krejić, 2023. "A harmonic framework for stepsize selection in gradient methods," Computational Optimization and Applications, Springer, vol. 85(1), pages 75-106, May.
    11. Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
    12. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.
    13. Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
    14. M. Fatemi & N. Mahdavi-Amiri, 2012. "A filter trust-region algorithm for unconstrained optimization with strong global convergence properties," Computational Optimization and Applications, Springer, vol. 52(1), pages 239-266, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:404-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.