IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v112y2002i2d10.1023_a1013653923062.html
   My bibliography  Save this article

On the Nonmonotone Line Search

Author

Listed:
  • Y. H. Dai

    (Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences)

Abstract

The technique of nonmonotone line search has received many successful applications and extensions in nonlinear optimization. This paper provides some basic analyses of the nonmonotone line search. Specifically, we analyze the nonmonotone line search methods for general nonconvex functions along different lines. The analyses are helpful in establishing the global convergence of a nonmonotone line search method under weaker conditions on the search direction. We explore also the relations between nonmonotone line search and R-linear convergence assuming that the objective function is uniformly convex. In addition, by taking the inexact Newton method as an example, we observe a numerical drawback of the original nonmonotone line search and suggest a standard Armijo line search when the nonmonotone line search condition is not satisfied by the prior trial steplength. The numerical results show the usefulness of such suggestion for the inexact Newton method.

Suggested Citation

  • Y. H. Dai, 2002. "On the Nonmonotone Line Search," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 315-330, February.
  • Handle: RePEc:spr:joptap:v:112:y:2002:i:2:d:10.1023_a:1013653923062
    DOI: 10.1023/A:1013653923062
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1013653923062
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1013653923062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao Li & Yu-Fei Yang & Bo Yu, 2012. "A nonmonotone PSB algorithm for solving unconstrained optimization," Computational Optimization and Applications, Springer, vol. 52(1), pages 267-280, May.
    2. Ubaldo M. García Palomares, 2023. "Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 821-856, July.
    3. Lei Yang, 2024. "Proximal Gradient Method with Extrapolation and Line Search for a Class of Non-convex and Non-smooth Problems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 68-103, January.
    4. Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
    5. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    6. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    7. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    8. Juliano B. Francisco & Douglas S. Gonçalves & Fermín S. V. Bazán & Lila L. T. Paredes, 2020. "Non-monotone inexact restoration method for nonlinear programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 867-888, July.
    9. Livieris, Ioannis E. & Pintelas, Panagiotis, 2015. "A new class of nonmonotone conjugate gradient training algorithms," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 404-413.
    10. M. Fatemi & N. Mahdavi-Amiri, 2012. "A filter trust-region algorithm for unconstrained optimization with strong global convergence properties," Computational Optimization and Applications, Springer, vol. 52(1), pages 239-266, May.
    11. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    12. Giulia Ferrandi & Michiel E. Hochstenbach & Nataša Krejić, 2023. "A harmonic framework for stepsize selection in gradient methods," Computational Optimization and Applications, Springer, vol. 85(1), pages 75-106, May.
    13. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    14. O. P. Ferreira & M. Lemes & L. F. Prudente, 2022. "On the inexact scaled gradient projection method," Computational Optimization and Applications, Springer, vol. 81(1), pages 91-125, January.
    15. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:112:y:2002:i:2:d:10.1023_a:1013653923062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.