IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v60y2015i1p263-276.html
   My bibliography  Save this article

An augmented Lagrangian ant colony based method for constrained optimization

Author

Listed:
  • Asghar Mahdavi
  • Mohammad Shiri

Abstract

One of the most efficient penalty based methods to solve constrained optimization problems is the augmented Lagrangian algorithm. This paper presents a constrained optimization algorithm to solve continuous constrained global optimization problems. The proposed algorithm integrates the benefit of the continuous ant colony ( $$\hbox {ACO}_\mathrm{R}$$ ACO R ) capability for discovering the global optimum with the effective behavior of the Lagrangian multiplier method to handle constraints. This method is tested on 13 well-known benchmark functions and compared with four other state-of-the-art algorithms. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Asghar Mahdavi & Mohammad Shiri, 2015. "An augmented Lagrangian ant colony based method for constrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 263-276, January.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:263-276
    DOI: 10.1007/s10589-014-9664-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9664-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9664-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel Amstutz, 2011. "Augmented Lagrangian for cone constrained topology optimization," Computational Optimization and Applications, Springer, vol. 49(1), pages 101-122, May.
    2. Ernesto Birgin & J. Martínez, 2012. "Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization," Computational Optimization and Applications, Springer, vol. 51(3), pages 941-965, April.
    3. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    4. Y. Zhou & X. Yang, 2012. "Augmented Lagrangian functions for constrained optimization problems," Journal of Global Optimization, Springer, vol. 52(1), pages 95-108, January.
    5. Kalyanmoy Deb & Soumil Srivastava, 2012. "A genetic algorithm based augmented Lagrangian method for constrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 869-902, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    2. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
    3. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    4. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    5. Jiao-fen Li & Wen Li & Ru Huang, 2016. "An efficient method for solving a matrix least squares problem over a matrix inequality constraint," Computational Optimization and Applications, Springer, vol. 63(2), pages 393-423, March.
    6. Fernando Soares Carvalho & Carla Tatiana Mota Anflor, 2024. "The Concept of Topological Derivative for Eigenvalue Optimization Problem for Plane Structures," Mathematics, MDPI, vol. 12(17), pages 1-20, September.
    7. Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.
    8. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    9. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    10. Ozgur Kisi & Armin Azad & Hamed Kashi & Amir Saeedian & Seyed Ali Asghar Hashemi & Salar Ghorbani, 2019. "Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 847-861, January.
    11. Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
    12. Amjad Hudaib & Mohammad Khanafseh & Ola Surakhi, 2018. "An Improved Version of K-medoid Algorithm using CRO," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 116-116, February.
    13. Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
    14. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2012. "Design of wind farm layout using ant colony algorithm," Renewable Energy, Elsevier, vol. 44(C), pages 53-62.
    15. Martin Schlüter & Matthias Gerdts, 2010. "The oracle penalty method," Journal of Global Optimization, Springer, vol. 47(2), pages 293-325, June.
    16. Ali Sardar Shahraki & Mohim Tash & Tommaso Caloiero & Ommolbanin Bazrafshan, 2024. "Optimal Allocation of Water Resources Using Agro-Economic Development and Colony Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    17. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    18. Tiago Maritan Ugulino Araújo & Lisieux Marie M. S. Andrade & Carlos Magno & Lucídio Anjos Formiga Cabral & Roberto Quirino Nascimento & Cláudio N. Meneses, 2016. "DC-GRASP: directing the search on continuous-GRASP," Journal of Heuristics, Springer, vol. 22(4), pages 365-382, August.
    19. Shao, Peng & Liang, Ying & Li, Guangquan & Li, Xing & Yang, Le, 2023. "Birefringence learning: A new global optimization technology model based on birefringence principle in application on artificial bee colony," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 470-486.
    20. Andres Quiros-Granados & JAvier Trejos-Zelaya, 2019. "Estimation of the yield curve for Costa Rica using combinatorial optimization metaheuristics applied to nonlinear regression," Papers 2001.00920, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:263-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.