IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v12y2018i2p116.html
   My bibliography  Save this article

An Improved Version of K-medoid Algorithm using CRO

Author

Listed:
  • Amjad Hudaib
  • Mohammad Khanafseh
  • Ola Surakhi

Abstract

Clustering is the process of grouping a set of patterns into different disjoint clusters where each cluster contains the alike patterns. Many algorithms had been proposed before for clustering. K-medoid is a variant of k-mean that use an actual point in the cluster to represent it instead of the mean in the k-mean algorithm to get the outliers and reduce noise in the cluster. In order to enhance performance of k-medoid algorithm and get more accurate clusters, a hybrid algorithm is proposed which use CRO algorithm along with k-medoid. In this method, CRO is used to expand searching for the optimal medoid and enhance clustering by getting more precise results. The performance of the new algorithm is evaluated by comparing its results with five clustering algorithms, k-mean, k-medoid, DB/rand/1/bin, CRO based clustering algorithm and hybrid CRO-k-mean by using four real world datasets- Lung cancer, Iris, Breast cancer Wisconsin and Haberman’s survival from UCI machine learning data repository. The results were conducted and compared base on different metrics and show that proposed algorithm enhanced clustering technique by giving more accurate results.

Suggested Citation

  • Amjad Hudaib & Mohammad Khanafseh & Ola Surakhi, 2018. "An Improved Version of K-medoid Algorithm using CRO," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 116-116, February.
  • Handle: RePEc:ibn:masjnl:v:12:y:2018:i:2:p:116
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/72876/40231
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/72876
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
    2. Ali Sardar Shahraki & Mohim Tash & Tommaso Caloiero & Ommolbanin Bazrafshan, 2024. "Optimal Allocation of Water Resources Using Agro-Economic Development and Colony Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    3. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    4. Qiang Yang & Xu Guo & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu, 2022. "Differential Elite Learning Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(8), pages 1-32, April.
    5. Hakan Yılmazer & Selma Ayşe Özel, 2024. "Diverse but Relevant Recommendations with Continuous Ant Colony Optimization," Mathematics, MDPI, vol. 12(16), pages 1-26, August.
    6. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    7. Gao, Wei-feng & Huang, Ling-ling & Liu, San-yang & Chan, Felix T.S. & Dai, Cai & Shan, Xian, 2015. "Artificial bee colony algorithm with multiple search strategies," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 269-287.
    8. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
    9. Li, Yuanmao & Liu, Guixiong & Deng, Wei & Li, Zuyu, 2024. "Comparative study on parameter identification of an electrochemical model for lithium-ion batteries via meta-heuristic methods," Applied Energy, Elsevier, vol. 367(C).
    10. Behzad Ataie-Ashtiani & Hamed Ketabchi, 2011. "Elitist Continuous Ant Colony Optimization Algorithm for Optimal Management of Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 165-190, January.
    11. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    12. Warren Liao, T. & Chang, P.C., 2010. "Impacts of forecast, inventory policy, and lead time on supply chain inventory--A numerical study," International Journal of Production Economics, Elsevier, vol. 128(2), pages 527-537, December.
    13. Broderick Crawford & Ricardo Soto & Gino Astorga & José García & Carlos Castro & Fernando Paredes, 2017. "Putting Continuous Metaheuristics to Work in Binary Search Spaces," Complexity, Hindawi, vol. 2017, pages 1-19, May.
    14. Asghar Mahdavi & Mohammad Shiri, 2015. "An augmented Lagrangian ant colony based method for constrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 263-276, January.
    15. Stefano Bromuri, 2019. "Dynamic heuristic acceleration of linearly approximated SARSA( $$\lambda $$ λ ): using ant colony optimization to learn heuristics dynamically," Journal of Heuristics, Springer, vol. 25(6), pages 901-932, December.
    16. Ahmad Wedyan & Jacqueline Whalley & Ajit Narayanan, 2017. "Hydrological Cycle Algorithm for Continuous Optimization Problems," Journal of Optimization, Hindawi, vol. 2017, pages 1-25, December.
    17. Peter Korošec & Jurij Šilc, 2013. "The continuous differential ant-stigmergy algorithm for numerical optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 481-502, October.
    18. Khaled Loukhaoukha, 2013. "Image Watermarking Algorithm Based on Multiobjective Ant Colony Optimization and Singular Value Decomposition in Wavelet Domain," Journal of Optimization, Hindawi, vol. 2013, pages 1-10, June.
    19. Li, Haibao & Cai, Zhiqiang & Zhang, Shuai & Zhao, Jiangbin & Si, Shubin, 2024. "Time series importance measure-based reliability optimization for cellular manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:12:y:2018:i:2:p:116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.