Dynamic heuristic acceleration of linearly approximated SARSA( $$\lambda $$ λ ): using ant colony optimization to learn heuristics dynamically
Author
Abstract
Suggested Citation
DOI: 10.1007/s10732-019-09408-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
- Raphael Fonteneau & Susan Murphy & Louis Wehenkel & Damien Ernst, 2013. "Batch mode reinforcement learning based on the synthesis of artificial trajectories," Annals of Operations Research, Springer, vol. 208(1), pages 383-416, September.
- Daniel Hein & Alexander Hentschel & Thomas A. Runkler & Steffen Udluft, 2016. "Reinforcement Learning with Particle Swarm Optimization Policy (PSO-P) in Continuous State and Action Spaces," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 7(3), pages 23-42, July.
- Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.
- Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao & Ji, Jie, 2018. "Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 840-873.
- Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
- Nathan Companez & Aldeida Aleti, 2016. "Can Monte-Carlo Tree Search learn to sacrifice?," Journal of Heuristics, Springer, vol. 22(6), pages 783-813, December.
- Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
- Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
- Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
- Li Xia, 2020. "Risk‐Sensitive Markov Decision Processes with Combined Metrics of Mean and Variance," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2808-2827, December.
- Neha Soni & Enakshi Khular Sharma & Narotam Singh & Amita Kapoor, 2019. "Impact of Artificial Intelligence on Businesses: from Research, Innovation, Market Deployment to Future Shifts in Business Models," Papers 1905.02092, arXiv.org.
- Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
- Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2022.
"Voting: A machine learning approach,"
European Journal of Operational Research, Elsevier, vol. 299(3), pages 1003-1017.
- Burka, Dávid & Puppe, Clemens & Szepesváry, László & Tasnádi, Attila, 2020. "Voting: A machine learning approach," Working Paper Series in Economics 145, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
- De Bruyn, Arnaud & Viswanathan, Vijay & Beh, Yean Shan & Brock, Jürgen Kai-Uwe & von Wangenheim, Florian, 2020. "Artificial Intelligence and Marketing: Pitfalls and Opportunities," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 91-105.
- Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
- Chen, Jiaxin & Shu, Hong & Tang, Xiaolin & Liu, Teng & Wang, Weida, 2022. "Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment," Energy, Elsevier, vol. 239(PC).
- Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Haoran Wang & Xun Yu Zhou, 2020. "Continuous‐time mean–variance portfolio selection: A reinforcement learning framework," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1273-1308, October.
- Amjad Hudaib & Mohammad Khanafseh & Ola Surakhi, 2018. "An Improved Version of K-medoid Algorithm using CRO," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 116-116, February.
More about this item
Keywords
Dynamic heuristics; Reinforcement learning; Ant colony optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:6:d:10.1007_s10732-019-09408-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.