IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8404231.html
   My bibliography  Save this article

Putting Continuous Metaheuristics to Work in Binary Search Spaces

Author

Listed:
  • Broderick Crawford
  • Ricardo Soto
  • Gino Astorga
  • José García
  • Carlos Castro
  • Fernando Paredes

Abstract

In the real world, there are a number of optimization problems whose search space is restricted to take binary values; however, there are many continuous metaheuristics with good results in continuous search spaces. These algorithms must be adapted to solve binary problems. This paper surveys articles focused on the binarization of metaheuristics designed for continuous optimization.

Suggested Citation

  • Broderick Crawford & Ricardo Soto & Gino Astorga & José García & Carlos Castro & Fernando Paredes, 2017. "Putting Continuous Metaheuristics to Work in Binary Search Spaces," Complexity, Hindawi, vol. 2017, pages 1-19, May.
  • Handle: RePEc:hin:complx:8404231
    DOI: 10.1155/2017/8404231
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/8404231.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/8404231.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/8404231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    2. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    3. Surafel Luleseged Tilahun & Hong Choon Ong, 2015. "Prey-Predator Algorithm: A New Metaheuristic Algorithm for Optimization Problems," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 1331-1352, November.
    4. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    2. José García & Paola Moraga & Broderick Crawford & Ricardo Soto & Hernan Pinto, 2022. "Binarization Technique Comparisons of Swarm Intelligence Algorithm: An Application to the Multi-Demand Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    3. Paulo Figueroa-Torrez & Orlando Durán & Broderick Crawford & Felipe Cisternas-Caneo, 2023. "A Binary Black Widow Optimization Algorithm for Addressing the Cell Formation Problem Involving Alternative Routes and Machine Reliability," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    4. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    5. Mauricio Castillo & Ricardo Soto & Broderick Crawford & Carlos Castro & Rodrigo Olivares, 2021. "A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    6. José García & José Lemus-Romani & Francisco Altimiras & Broderick Crawford & Ricardo Soto & Marcelo Becerra-Rozas & Paola Moraga & Alex Paz Becerra & Alvaro Peña Fritz & Jose-Miguel Rubio & Gino Astor, 2021. "A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    7. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    8. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & José García, 2022. "Swarm-Inspired Computing to Solve Binary Optimization Problems: A Backward Q-Learning Binarization Scheme Selector," Mathematics, MDPI, vol. 10(24), pages 1-30, December.
    9. José García & Gino Astorga & Víctor Yepes, 2021. "An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    10. Sergio Valdivia & Ricardo Soto & Broderick Crawford & Nicolás Caselli & Fernando Paredes & Carlos Castro & Rodrigo Olivares, 2020. "Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems," Mathematics, MDPI, vol. 8(7), pages 1-42, July.
    11. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    12. Michael J. Ryoba & Shaojian Qu & Ying Ji & Deqiang Qu, 2020. "The Right Time for Crowd Communication during Campaigns for Sustainable Success of Crowdfunding: Evidence from Kickstarter Platform," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    13. Michael J. Ryoba & Shaojian Qu & Yongyi Zhou, 2021. "Feature subset selection for predicting the success of crowdfunding project campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 671-684, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    2. Erjavec, J. & Gradisar, M. & Trkman, P., 2012. "Assessment of stock size to minimize cutting stock production costs," International Journal of Production Economics, Elsevier, vol. 135(1), pages 170-176.
    3. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    4. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    5. Stoyan, Yu. G. & Pankratov, A. V., 1999. "Regular packing of congruent polygons on the rectangular sheet," European Journal of Operational Research, Elsevier, vol. 113(3), pages 653-675, March.
    6. Russo, Mauro & Sforza, Antonio & Sterle, Claudio, 2013. "An improvement of the knapsack function based algorithm of Gilmore and Gomory for the unconstrained two-dimensional guillotine cutting problem," International Journal of Production Economics, Elsevier, vol. 145(2), pages 451-462.
    7. Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
    8. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.
    9. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    10. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    11. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    12. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    13. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    14. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    15. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    16. Riehme, Jan & Scheithauer, Guntram & Terno, Johannes, 1996. "The solution of two-stage guillotine cutting stock problems having extremely varying order demands," European Journal of Operational Research, Elsevier, vol. 91(3), pages 543-552, June.
    17. Ramón Alvarez-Valdes & Rafael Martí & Jose M. Tamarit & Antonio Parajón, 2007. "GRASP and Path Relinking for the Two-Dimensional Two-Stage Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 261-272, May.
    18. Hifi, Mhand & M'Hallah, Rym, 2006. "Strip generation algorithms for constrained two-dimensional two-staged cutting problems," European Journal of Operational Research, Elsevier, vol. 172(2), pages 515-527, July.
    19. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    20. Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8404231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.