IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i3p869-902.html
   My bibliography  Save this article

A genetic algorithm based augmented Lagrangian method for constrained optimization

Author

Listed:
  • Kalyanmoy Deb
  • Soumil Srivastava

Abstract

Among the penalty based approaches for constrained optimization, augmented Lagrangian (AL) methods are better in at least three ways: (i) they have theoretical convergence properties, (ii) they distort the original objective function minimally, thereby providing a better function landscape for search, and (iii) they can result in computing optimal Lagrange multiplier for each constraint as a by-product. Instead of keeping a constant penalty parameter throughout the optimization process, these algorithms update the parameters (called multipliers) adaptively so that the corresponding penalized function dynamically changes its optimum from the unconstrained minimum point to the constrained minimum point with iterations. However, the flip side of these algorithms is that the overall algorithm requires a serial application of a number of unconstrained optimization tasks, a process that is usually time-consuming and tend to be computationally expensive. In this paper, we devise a genetic algorithm based parameter update strategy to a particular AL method. The proposed strategy updates critical parameters in an adaptive manner based on population statistics. Occasionally, a classical optimization method is used to improve the GA-obtained solution, thereby providing the resulting hybrid procedure its theoretical convergence property. The GAAL method is applied to a number of constrained test problems taken from the evolutionary algorithms (EAs) literature. The number of function evaluations required by GAAL in most problems is found to be smaller than that needed by a number of existing evolutionary based constraint handling methods. GAAL method is found to be accurate, computationally fast, and reliable over multiple runs. Besides solving the problems, the proposed GAAL method is also able to find the optimal Lagrange multiplier associated with each constraint for the test problems as an added benefit—a matter that is important for a sensitivity analysis of the obtained optimized solution, but has not yet been paid adequate attention in the past evolutionary constrained optimization studies. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Kalyanmoy Deb & Soumil Srivastava, 2012. "A genetic algorithm based augmented Lagrangian method for constrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 869-902, December.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:869-902
    DOI: 10.1007/s10589-012-9468-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9468-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9468-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuel Amstutz, 2011. "Augmented Lagrangian for cone constrained topology optimization," Computational Optimization and Applications, Springer, vol. 49(1), pages 101-122, May.
    2. Martin Schlüter & Matthias Gerdts, 2010. "The oracle penalty method," Journal of Global Optimization, Springer, vol. 47(2), pages 293-325, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manoj Dhadwal & Sung Jung & Chang Kim, 2014. "Advanced particle swarm assisted genetic algorithm for constrained optimization problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 781-806, July.
    2. Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.
    3. Asghar Mahdavi & Mohammad Shiri, 2015. "An augmented Lagrangian ant colony based method for constrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 263-276, January.
    4. Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
    5. Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Soares Carvalho & Carla Tatiana Mota Anflor, 2024. "The Concept of Topological Derivative for Eigenvalue Optimization Problem for Plane Structures," Mathematics, MDPI, vol. 12(17), pages 1-20, September.
    2. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    3. Maen Z. Kreishan & Ahmed F. Zobaa, 2023. "Scenario-Based Uncertainty Modeling for Power Management in Islanded Microgrid Using the Mixed-Integer Distributed Ant Colony Optimization," Energies, MDPI, vol. 16(10), pages 1-30, May.
    4. Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.
    5. Teichgraeber, Holger & Brodrick, Philip G. & Brandt, Adam R., 2017. "Optimal design and operations of a flexible oxyfuel natural gas plant," Energy, Elsevier, vol. 141(C), pages 506-518.
    6. Maen Z. Kreishan & Ahmed F. Zobaa, 2022. "Mixed-Integer Distributed Ant Colony Optimization of Dump Load Allocation with Improved Islanded Microgrid Load Flow," Energies, MDPI, vol. 16(1), pages 1-30, December.
    7. Asghar Mahdavi & Mohammad Shiri, 2015. "An augmented Lagrangian ant colony based method for constrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 263-276, January.
    8. J. Gago-Vargas & I. Hartillo & J. Puerto & J. Ucha, 2015. "An improved test set approach to nonlinear integer problems with applications to engineering design," Computational Optimization and Applications, Springer, vol. 62(2), pages 565-588, November.
    9. Gauri Thakur & Ashok Pal & Nitin Mittal & Asha Rajiv & Rohit Salgotra, 2024. "Slime Mould Algorithm Based on a Gaussian Mutation for Solving Constrained Optimization Problems," Mathematics, MDPI, vol. 12(10), pages 1-37, May.
    10. Qiao Zhao & Mounir Mecheri & Thibaut Neveux & Romain Privat & Jean-Noël Jaubert & Yann Le Moullec, 2023. "Search for the Optimal Design of a Supercritical-CO 2 Brayton Power Cycle from a Superstructure-Based Approach Implemented in a Commercial Simulation Software," Energies, MDPI, vol. 16(14), pages 1-31, July.
    11. Eryang Guo & Yuelin Gao & Chenyang Hu & Jiaojiao Zhang, 2023. "A Hybrid PSO-DE Intelligent Algorithm for Solving Constrained Optimization Problems Based on Feasibility Rules," Mathematics, MDPI, vol. 11(3), pages 1-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:869-902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.