IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v271y2015icp269-287.html
   My bibliography  Save this article

Artificial bee colony algorithm with multiple search strategies

Author

Listed:
  • Gao, Wei-feng
  • Huang, Ling-ling
  • Liu, San-yang
  • Chan, Felix T.S.
  • Dai, Cai
  • Shan, Xian

Abstract

Considering that the solution search equation of artificial bee colony (ABC) algorithm does well in exploration but badly in exploitation which results in slow convergence, this paper studies whether the performance of ABC can be improved by combining different search strategies, which have distinct advantages. Based on this consideration, we develop a novel ABC with multiple search strategies, named MuABC. MuABC uses three search strategies to constitute a strategy candidate pool. In order to further improve the performance of the algorithm, an adaptive selection mechanism is used to choose suitable search strategies to generate candidate solutions based on the previous search experience. In addition, a candidate solution is generated based on a Gaussian distribution to exploit the search ability. MuABC is tested on a set of 22 benchmark functions, and is compared with some other ABCs and several state-of-the-art algorithms. The comparison results show that the proposed algorithm offers the highest solution quality, the fastest global convergence, and the strongest robustness among all the contenders on almost all the cases.

Suggested Citation

  • Gao, Wei-feng & Huang, Ling-ling & Liu, San-yang & Chan, Felix T.S. & Dai, Cai & Shan, Xian, 2015. "Artificial bee colony algorithm with multiple search strategies," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 269-287.
  • Handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:269-287
    DOI: 10.1016/j.amc.2015.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315012370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Socha, Krzysztof & Dorigo, Marco, 2008. "Ant colony optimization for continuous domains," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1155-1173, March.
    2. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yetgin, Zeki & Abaci, Hüseyin, 2021. "Honey formation optimization framework for design problems," Applied Mathematics and Computation, Elsevier, vol. 394(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    2. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    3. Wang, Zutong & Guo, Jiansheng & Zheng, Mingfa & Wang, Ying, 2015. "Uncertain multiobjective traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 478-489.
    4. Anand Kumar & Manoj Thakur & Garima Mittal, 2018. "A new ants interaction scheme for continuous optimization problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 784-801, August.
    5. Huang, Wentao & Jian, Sisi & Rey, David, 2024. "Non-additive network pricing with non-cooperative mobility service providers," European Journal of Operational Research, Elsevier, vol. 318(3), pages 802-824.
    6. Nikolaos Ploskas & Nikolaos V. Sahinidis, 2022. "Review and comparison of algorithms and software for mixed-integer derivative-free optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 433-462, March.
    7. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    8. Ozgur Kisi & Armin Azad & Hamed Kashi & Amir Saeedian & Seyed Ali Asghar Hashemi & Salar Ghorbani, 2019. "Modeling Groundwater Quality Parameters Using Hybrid Neuro-Fuzzy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 847-861, January.
    9. Bera, Sasadhar & Mukherjee, Indrajit, 2012. "An ellipsoidal distance-based search strategy of ants for nonlinear single and multiple response optimization problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 321-332.
    10. Amjad Hudaib & Mohammad Khanafseh & Ola Surakhi, 2018. "An Improved Version of K-medoid Algorithm using CRO," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 116-116, February.
    11. Liao, Tianjun & Stützle, Thomas & Montes de Oca, Marco A. & Dorigo, Marco, 2014. "A unified ant colony optimization algorithm for continuous optimization," European Journal of Operational Research, Elsevier, vol. 234(3), pages 597-609.
    12. Eroğlu, Yunus & Seçkiner, Serap Ulusam, 2012. "Design of wind farm layout using ant colony algorithm," Renewable Energy, Elsevier, vol. 44(C), pages 53-62.
    13. Qi Liu & Gengzhong Feng & Nengmin Wang & Giri Kumar Tayi, 2018. "A multi-objective model for discovering high-quality knowledge based on data quality and prior knowledge," Information Systems Frontiers, Springer, vol. 20(2), pages 401-416, April.
    14. Martin Schlüter & Matthias Gerdts, 2010. "The oracle penalty method," Journal of Global Optimization, Springer, vol. 47(2), pages 293-325, June.
    15. Ali Sardar Shahraki & Mohim Tash & Tommaso Caloiero & Ommolbanin Bazrafshan, 2024. "Optimal Allocation of Water Resources Using Agro-Economic Development and Colony Optimization Algorithm," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    16. Qi Liu & Gengzhong Feng & Giri Kumar Tayi & Jun Tian, 2021. "Managing Data Quality of the Data Warehouse: A Chance-Constrained Programming Approach," Information Systems Frontiers, Springer, vol. 23(2), pages 375-389, April.
    17. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    18. Tiago Maritan Ugulino Araújo & Lisieux Marie M. S. Andrade & Carlos Magno & Lucídio Anjos Formiga Cabral & Roberto Quirino Nascimento & Cláudio N. Meneses, 2016. "DC-GRASP: directing the search on continuous-GRASP," Journal of Heuristics, Springer, vol. 22(4), pages 365-382, August.
    19. Shao, Peng & Liang, Ying & Li, Guangquan & Li, Xing & Yang, Le, 2023. "Birefringence learning: A new global optimization technology model based on birefringence principle in application on artificial bee colony," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 470-486.
    20. Andres Quiros-Granados & JAvier Trejos-Zelaya, 2019. "Estimation of the yield curve for Costa Rica using combinatorial optimization metaheuristics applied to nonlinear regression," Papers 2001.00920, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:271:y:2015:i:c:p:269-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.