Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-011-9425-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kojima, Masakazu & Tuncel, Levent, 2002. "On the finite convergence of successive SDP relaxation methods," European Journal of Operational Research, Elsevier, vol. 143(2), pages 325-341, December.
- Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
- Samuel Burer & Dieter Vandenbussche, 2009. "Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound," Computational Optimization and Applications, Springer, vol. 43(2), pages 181-195, June.
- Jean B. Lasserre, 2002. "Semidefinite Programming vs. LP Relaxations for Polynomial Programming," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 347-360, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
- Martin Ballerstein & Dennis Michaels, 2014. "Extended formulations for convex envelopes," Journal of Global Optimization, Springer, vol. 60(2), pages 217-238, October.
- Jitamitra Desai & Shalinee Kishore, 2017. "A global optimization framework for distributed antenna location in CDMA cellular networks," Annals of Operations Research, Springer, vol. 253(1), pages 169-191, June.
- Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiao, Hongwei & Liu, Sanyang & Lu, Nan, 2015. "A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 973-985.
- Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
- de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Other publications TiSEM f63bfe23-904e-4d7a-8677-8, Tilburg University, School of Economics and Management.
- de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
- Christoph Buchheim & Maribel Montenegro & Angelika Wiegele, 2019. "SDP-based branch-and-bound for non-convex quadratic integer optimization," Journal of Global Optimization, Springer, vol. 73(3), pages 485-514, March.
- Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
- Yong Xia & Ying-Wei Han, 2014. "Partial Lagrangian relaxation for the unbalanced orthogonal Procrustes problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 225-237, April.
- Jean Lasserre & Tung Thanh, 2012. "A “joint + marginal” heuristic for 0/1 programs," Journal of Global Optimization, Springer, vol. 54(4), pages 729-744, December.
- Monique Laurent & Zhao Sun, 2014. "Handelman’s hierarchy for the maximum stable set problem," Journal of Global Optimization, Springer, vol. 60(3), pages 393-423, November.
- Edirisinghe, Chanaka & Jeong, Jaehwan & Chen, Jingnan, 2021. "Optimal portfolio deleveraging under market impact and margin restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 746-759.
- Hezhi Luo & Yuanyuan Chen & Xianye Zhang & Duan Li & Huixian Wu, 2020. "Effective Algorithms for Optimal Portfolio Deleveraging Problem with Cross Impact," Papers 2012.07368, arXiv.org, revised Jan 2021.
- Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
- Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
- de Klerk, Etienne & Pasechnik, Dmitrii V., 2004. "Products of positive forms, linear matrix inequalities, and Hilbert 17th problem for ternary forms," European Journal of Operational Research, Elsevier, vol. 157(1), pages 39-45, August.
- Xiaoli Cen & Yong Xia, 2021. "A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1368-1383, October.
- de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Discussion Paper 2005-24, Tilburg University, Center for Economic Research.
- H. Tuy & H. Tuan, 2013. "Generalized S-Lemma and strong duality in nonconvex quadratic programming," Journal of Global Optimization, Springer, vol. 56(3), pages 1045-1072, July.
- Sven de Vries & Bernd Perscheid, 2022. "Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints," Journal of Global Optimization, Springer, vol. 84(3), pages 591-606, November.
- Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
- de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
More about this item
Keywords
Polynomial programs; Reformulation-Linearization Technique (RLT); Semidefinite programming; BARON; GloptiPoly; Semidefinite cuts; Global optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:52:y:2012:i:2:p:483-506. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.