IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i3d10.1007_s10898-018-0717-z.html
   My bibliography  Save this article

SDP-based branch-and-bound for non-convex quadratic integer optimization

Author

Listed:
  • Christoph Buchheim

    (TU Dortmund)

  • Maribel Montenegro

    (TU Dortmund)

  • Angelika Wiegele

    (Alpen-Adria-Universität Klagenfurt)

Abstract

Semidefinite programming (SDP) relaxations have been intensively used for solving discrete quadratic optimization problems, in particular in the binary case. For the general non-convex integer case with box constraints, the branch-and-bound algorithm Q-MIST has been proposed by Buchheim and Wiegele (Math Program 141(1–2):435–452, 2013), which is based on an extension of the well-known SDP-relaxation for max-cut. For solving the resulting SDPs, Q-MIST uses an off-the-shelf interior point algorithm. In this paper, we present a tailored coordinate ascent algorithm for solving the dual problems of these SDPs. Building on related ideas of Dong (SIAM J Optim 26(3):1962–1985, 2016), it exploits the particular structure of the SDPs, most importantly a small rank of the constraint matrices. The latter allows both an exact line search and a fast incremental update of the inverse matrices involved, so that the entire algorithm can be implemented to run in quadratic time per iteration. Moreover, we describe how to extend this approach to a certain two-dimensional coordinate update. Finally, we explain how to include arbitrary linear constraints into this framework, and evaluate our algorithm experimentally.

Suggested Citation

  • Christoph Buchheim & Maribel Montenegro & Angelika Wiegele, 2019. "SDP-based branch-and-bound for non-convex quadratic integer optimization," Journal of Global Optimization, Springer, vol. 73(3), pages 485-514, March.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0717-z
    DOI: 10.1007/s10898-018-0717-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0717-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0717-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    2. Samuel Burer & Dieter Vandenbussche, 2009. "Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound," Computational Optimization and Applications, Springer, vol. 43(2), pages 181-195, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Hongwei & Liu, Sanyang & Lu, Nan, 2015. "A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 973-985.
    2. Sven Mallach, 2021. "Inductive linearization for binary quadratic programs with linear constraints," 4OR, Springer, vol. 19(4), pages 549-570, December.
    3. Schauer, Joachim, 2016. "Asymptotic behavior of the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 357-363.
    4. Lv, Jian & Pang, Li-Ping & Wang, Jin-He, 2015. "Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 635-651.
    5. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    6. Hezhi Luo & Yuanyuan Chen & Xianye Zhang & Duan Li & Huixian Wu, 2020. "Effective Algorithms for Optimal Portfolio Deleveraging Problem with Cross Impact," Papers 2012.07368, arXiv.org, revised Jan 2021.
    7. Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
    8. Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
    9. Alexandre d'Aspremont & Noureddine El Karoui, 2013. "Weak Recovery Conditions from Graph Partitioning Bounds and Order Statistics," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 228-247, May.
    10. Sven de Vries & Bernd Perscheid, 2022. "Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints," Journal of Global Optimization, Springer, vol. 84(3), pages 591-606, November.
    11. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    12. Hanif Sherali & Evrim Dalkiran & Jitamitra Desai, 2012. "Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts," Computational Optimization and Applications, Springer, vol. 52(2), pages 483-506, June.
    13. Hezhi Luo & Xianye Zhang & Huixian Wu & Weiqiang Xu, 2023. "Effective algorithms for separable nonconvex quadratic programming with one quadratic and box constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 199-240, September.
    14. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    15. Ming Huang & Li-Ping Pang & Zun-Quan Xia, 2014. "The space decomposition theory for a class of eigenvalue optimizations," Computational Optimization and Applications, Springer, vol. 58(2), pages 423-454, June.
    16. Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
    17. Edirisinghe, Chanaka & Jeong, Jaehwan & Chen, Jingnan, 2021. "Optimal portfolio deleveraging under market impact and margin restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 746-759.
    18. Alexei Gaivoronski & Abdel Lisser & Rafael Lopez & Hu Xu, 2011. "Knapsack problem with probability constraints," Journal of Global Optimization, Springer, vol. 49(3), pages 397-413, March.
    19. Xiaoli Cen & Yong Xia, 2021. "A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1368-1383, October.
    20. Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0717-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.