IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v54y2012i4p729-744.html
   My bibliography  Save this article

A “joint + marginal” heuristic for 0/1 programs

Author

Listed:
  • Jean Lasserre
  • Tung Thanh

Abstract

We propose a heuristic for 0/1 programs based on the recent “joint + marginal” approach of the first author for parametric polynomial optimization. The idea is to first consider the n-variable (x 1 , . . . , x n ) problem as a (n − 1)-variable problem (x 2 , . . . , x n ) with the variable x 1 being now a parameter taking value in {0, 1}. One then solves a hierarchy of what we call “joint + marginal” semidefinite relaxations whose duals provide a sequence of polynomial approximations $${x_1\mapsto J_k(x_1)}$$ that converges to the optimal value function J (x 1 ) (as a function of the parameter x 1 ). One considers a fixed index k in the hierarchy and if J k (1) > J k (0) then one decides x 1 = 1 and x 1 =0 otherwise. The quality of the approximation depends on how large k can be chosen (in general, for significant size problems, k=1 is the only choice). One iterates the procedure with now a (n − 2)-variable problem with one parameter $${x_2 \in \{0, 1\}}$$ , etc. Variants are also briefly described as well as some preliminary numerical experiments on the MAXCUT, k-cluster and 0/1 knapsack problems. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Jean Lasserre & Tung Thanh, 2012. "A “joint + marginal” heuristic for 0/1 programs," Journal of Global Optimization, Springer, vol. 54(4), pages 729-744, December.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:729-744
    DOI: 10.1007/s10898-011-9788-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9788-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9788-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean B. Lasserre, 2002. "Semidefinite Programming vs. LP Relaxations for Polynomial Programming," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 347-360, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Other publications TiSEM f63bfe23-904e-4d7a-8677-8, Tilburg University, School of Economics and Management.
    2. de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
    3. Monique Laurent, 2003. "A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0--1 Programming," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 470-496, August.
    4. Hanif Sherali & Evrim Dalkiran & Jitamitra Desai, 2012. "Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts," Computational Optimization and Applications, Springer, vol. 52(2), pages 483-506, June.
    5. Etienne de Klerk & Jean B. Lasserre & Monique Laurent & Zhao Sun, 2017. "Bound-Constrained Polynomial Optimization Using Only Elementary Calculations," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 834-853, August.
    6. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    7. Monique Laurent & Zhao Sun, 2014. "Handelman’s hierarchy for the maximum stable set problem," Journal of Global Optimization, Springer, vol. 60(3), pages 393-423, November.
    8. de Klerk, Etienne & Pasechnik, Dmitrii V., 2004. "Products of positive forms, linear matrix inequalities, and Hilbert 17th problem for ternary forms," European Journal of Operational Research, Elsevier, vol. 157(1), pages 39-45, August.
    9. de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Discussion Paper 2005-24, Tilburg University, Center for Economic Research.
    10. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
    11. Jean B. Lasserre & Kim-Chuan Toh & Shouguang Yang, 2017. "A bounded degree SOS hierarchy for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 87-117, March.
    12. Myoung-Ju Park & Sung-Pil Hong, 2013. "Handelman rank of zero-diagonal quadratic programs over a hypercube and its applications," Journal of Global Optimization, Springer, vol. 56(2), pages 727-736, June.

    More about this item

    Keywords

    0/1 Programs; Semidefinite relaxations;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:4:p:729-744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.