IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v60y2014i2p217-238.html
   My bibliography  Save this article

Extended formulations for convex envelopes

Author

Listed:
  • Martin Ballerstein
  • Dennis Michaels

Abstract

In this work we derive explicit descriptions for the convex envelope of nonlinear functions that are component-wise concave on a subset of the variables and convex on the other variables. These functions account for more than 30 % of all nonlinearities in common benchmark libraries. To overcome the combinatorial difficulties in deriving the convex envelope description given by the component-wise concave part of the functions, we consider an extended formulation of the convex envelope based on the Reformulation–Linearization-Technique introduced by Sherali and Adams (SIAM J Discret Math 3(3):411–430, 1990 ). Computational results are reported showing that the extended formulation strategy is a useful tool in global optimization. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Martin Ballerstein & Dennis Michaels, 2014. "Extended formulations for convex envelopes," Journal of Global Optimization, Springer, vol. 60(2), pages 217-238, October.
  • Handle: RePEc:spr:jglopt:v:60:y:2014:i:2:p:217-238
    DOI: 10.1007/s10898-013-0104-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0104-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0104-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    2. Hanif Sherali & Evrim Dalkiran & Jitamitra Desai, 2012. "Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts," Computational Optimization and Applications, Springer, vol. 52(2), pages 483-506, June.
    3. Hanif Sherali & Evrim Dalkiran & Leo Liberti, 2012. "Reduced RLT representations for nonconvex polynomial programming problems," Journal of Global Optimization, Springer, vol. 52(3), pages 447-469, March.
    4. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Locatelli, 2020. "Convex envelope of bivariate cubic functions over rectangular regions," Journal of Global Optimization, Springer, vol. 76(1), pages 1-24, January.
    2. M. Locatelli, 2022. "Exact and approximate results for convex envelopes of special structured functions over simplices," Journal of Global Optimization, Springer, vol. 83(2), pages 201-220, June.
    3. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruth Misener & Christodoulos A. Floudas, 2014. "A Framework for Globally Optimizing Mixed-Integer Signomial Programs," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 905-932, June.
    2. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    3. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    4. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    5. Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
    6. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    7. Pete Janes & Alistair Rendell, 2013. "Deterministic global optimization in ab-initio quantum chemistry," Journal of Global Optimization, Springer, vol. 56(2), pages 537-558, June.
    8. Jean Lasserre & Tung Thanh, 2013. "Convex underestimators of polynomials," Journal of Global Optimization, Springer, vol. 56(1), pages 1-25, May.
    9. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    10. Lucas A. Waddell & Jerry L. Phillips & Tianzhu Liu & Swarup Dhar, 2023. "An LP-based characterization of solvable QAP instances with chess-board and graded structures," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-23, July.
    11. Jitamitra Desai & Shalinee Kishore, 2017. "A global optimization framework for distributed antenna location in CDMA cellular networks," Annals of Operations Research, Springer, vol. 253(1), pages 169-191, June.
    12. Binyuan Chen & Simge Küçükyavuz & Suvrajeet Sen, 2011. "Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs," Operations Research, INFORMS, vol. 59(1), pages 202-210, February.
    13. Emily Speakman & Jon Lee, 2017. "Quantifying Double McCormick," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1230-1253, November.
    14. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    15. Scott J. Davis & Shatiel B. Edwards & Gerald E. Teper & David G. Bassett & Michael J. McCarthy & Scott C. Johnson & Craig R. Lawton & Matthew J. Hoffman & Liliana Shelton & Stephen M. Henry & Darryl J, 2016. "Maximizing the U.S. Army’s Future Contribution to Global Security Using the Capability Portfolio Analysis Tool (CPAT)," Interfaces, INFORMS, vol. 46(1), pages 91-108, February.
    16. Emily Speakman & Jon Lee, 2018. "On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation," Journal of Global Optimization, Springer, vol. 72(2), pages 129-153, October.
    17. Alberto Del Pia & Aida Khajavirad, 2017. "A Polyhedral Study of Binary Polynomial Programs," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 389-410, May.
    18. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:60:y:2014:i:2:p:217-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.