IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2901-d886911.html
   My bibliography  Save this article

Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring

Author

Listed:
  • Refah Alotaibi

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Mazen Nassar

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt)

  • Hoda Rezk

    (Department of Statistics, Al-Azhar University, Cairo 11751, Egypt)

  • Ahmed Elshahhat

    (Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt)

Abstract

As an extension of the standard Weibull distribution, a new crucial distribution termed alpha power Weibull distribution has been presented. It can model decreasing, increasing, bathtub, and upside-down bathtub failure rates. This research investigates the estimation of model parameters and some of its reliability characteristics using progressively Type-II censored data. To get estimates of unknown parameters, reliability, and hazard rate functions, the maximum likelihood, and Bayesian estimation approaches are studied. To acquire estimated confidence intervals for unknown parameters and reliability characteristics, the maximum likelihood asymptotic properties are used. The Markov chain Monte Carlo approach is used in Bayesian estimation to provide Bayesian estimates under squared error and LINEX loss functions. Furthermore, the highest posterior density credible intervals of the parameters and reliability characteristics are determined. A Monte Carlo simulation study is used to investigate the accuracy of various point and interval estimators. In addition, various optimality criteria are used to choose the best progressive censoring schemes. Two real data from the engineering field are analyzed to demonstrate the applicability and significance of the proposed approaches. Based on numerical results, the Bayesian procedure for estimating the parameters and reliability characteristics of alpha power Weibull distribution is recommended. The analysis of two real data sets showed that the alpha power Weibull distribution is a good model to investigate engineering data in the presence of progressive Type-II censoring.

Suggested Citation

  • Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2901-:d:886911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas Mahdavi & Debasis Kundu, 2017. "A new method for generating distributions with an application to exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6543-6557, July.
    2. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    3. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    4. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    5. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    6. Basak, Prasanta & Basak, Indrani & Balakrishnan, N., 2009. "Estimation for the three-parameter lognormal distribution based on progressively censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3580-3592, August.
    7. Chansoo Kim & Jinhyouk Jung & Younshik Chung, 2011. "Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring," Statistical Papers, Springer, vol. 52(1), pages 53-70, February.
    8. Biswabrata Pradhan & Debasis Kundu, 2009. "On progressively censored generalized exponential distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 497-515, November.
    9. Kundu, Debasis & Howlader, Hatem, 2010. "Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1547-1558, June.
    10. M. Nassar & A. Alzaatreh & M. Mead & O. Abo-Kasem, 2017. "Alpha power Weibull distribution: Properties and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 10236-10252, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashad M. EL-Sagheer, 2018. "Estimation of parameters of Weibull–Gamma distribution based on progressively censored data," Statistical Papers, Springer, vol. 59(2), pages 725-757, June.
    2. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    3. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    4. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    5. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    6. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    7. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    8. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    9. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    10. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    11. Fu, Jiayu & Xu, Ancha & Tang, Yincai, 2012. "Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1829-1836.
    12. Teena Goyal & Piyush K. Rai & Sandeep K. Maurya, 2020. "Bayesian Estimation for GDUS Exponential Distribution Under Type-I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 7(2), pages 307-345, June.
    13. Ritwik Bhattacharya & Biswabrata Pradhan, 2017. "Computation of optimum Type-II progressively hybrid censoring schemes using variable neighborhood search algorithm," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 802-821, December.
    14. Refah Alotaibi & Ehab M. Almetwally & Indranil Ghosh & Hoda Rezk, 2022. "Classical and Bayesian Inference on Finite Mixture of Exponentiated Kumaraswamy Gompertz and Exponentiated Kumaraswamy Fréchet Distributions under Progressive Type II Censoring with Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    15. Musleh, Rola M. & Helu, Amal, 2014. "Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 216-227.
    16. Manoj Kumar Rastogi & Yogesh Mani Tripathi, 2014. "Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2375-2405, November.
    17. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    18. Jemilohun Vincent Gbenga & Ipinyomi Reuben Adeyemi, 2022. "Alpha Power Extended Inverse Weibull Poisson Distribution: Properties, Inference, and Applications to lifetime data," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(1), pages 1-10, March.
    19. Amit Singh Nayal & Bhupendra Singh & Vrijesh Tripathi & Abhishek Tyagi, 2024. "Analyzing stress-strength reliability $$\delta =\text{ P }[U," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2453-2472, June.
    20. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2901-:d:886911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.