IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3355-d915958.html
   My bibliography  Save this article

Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering

Author

Listed:
  • Refah Alotaibi

    (Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Mazen Nassar

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt)

  • Ahmed Elshahhat

    (Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt)

Abstract

This work addresses the estimation issues of the XLindley distribution using an adaptive Type-II progressive hybrid censoring scheme. Maximum likelihood and Bayesian approaches are used to estimate the unknown parameter, reliability, and hazard rate functions. Bayesian estimators are explored under the assumption of independent gamma priors and a symmetric loss function. The approximate confidence intervals and the highest posterior density credible intervals are also computed. An extensive simulation study that takes into account various sample sizes and censoring schemes is implemented to evaluate the various estimating methods. Finally, for an explanation, two real data sets from the chemical engineering field are provided to show that the XLindley distribution is the best model compared to some competitive models for the same real data. The Bayesian paradigm utilizing the Metropolis–Hastings algorithm to generate samples from the posterior distribution is recommended to estimate any parameter of life of the XLindley distribution when data are obtained from adaptive Type-II progressively hybrid censored sample.

Suggested Citation

  • Refah Alotaibi & Mazen Nassar & Ahmed Elshahhat, 2022. "Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3355-:d:915958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3355/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    2. Hon Keung Tony Ng & Debasis Kundu & Ping Shing Chan, 2009. "Statistical analysis of exponential lifetimes under an adaptive Type‐II progressive censoring scheme," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 687-698, December.
    3. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    4. Pavia, Jose M., 2015. "Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(c01).
    5. Siyi Chen & Wenhao Gui, 2020. "Statistical Analysis of a Lifetime Distribution with a Bathtub-Shaped Failure Rate Function under Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(5), pages 1-21, April.
    6. Mazen Nassar & Refah Alotaibi & Sanku Dey & Leonardo Acho, 2022. "Estimation Based on Adaptive Progressively Censored under Competing Risks Model with Engineering Applications," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, March.
    7. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    8. Essam A. Ahmed, 2014. "Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 752-768, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    2. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    3. Sanku Dey & Ahmed Elshahhat & Mazen Nassar, 2023. "Analysis of progressive type-II censored gamma distribution," Computational Statistics, Springer, vol. 38(1), pages 481-508, March.
    4. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    5. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    6. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    7. Siyi Chen & Wenhao Gui, 2020. "Statistical Analysis of a Lifetime Distribution with a Bathtub-Shaped Failure Rate Function under Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 8(5), pages 1-21, April.
    8. Hassan Okasha & Yuhlong Lio & Mohammed Albassam, 2021. "On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
    9. Kyeongjun Lee, 2024. "Inference for Parameters of Exponential Distribution under Combined Type II Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 12(6), pages 1-23, March.
    10. Refah Alotaibi & Faten S. Alamri & Ehab M. Almetwally & Min Wang & Hoda Rezk, 2022. "Classical and Bayesian Inference of a Progressive-Stress Model for the Nadarajah–Haghighi Distribution with Type II Progressive Censoring and Different Loss Functions," Mathematics, MDPI, vol. 10(9), pages 1-19, May.
    11. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    12. Nesreen M. Al-Olaimat & Husam A. Bayoud & Mohammad Z. Raqab, 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.
    13. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    14. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    15. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    16. Badamasi Abba & Hong Wang, 2024. "A new failure times model for one and two failure modes system: A Bayesian study with Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 238(2), pages 304-323, April.
    17. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    18. Logar, Ivana & Brouwer, Roy & Campbell, Danny, 2020. "Does attribute order influence attribute-information processing in discrete choice experiments?," Resource and Energy Economics, Elsevier, vol. 60(C).
    19. Padayachee Trishanta & Khamiakova Tatsiana & Shkedy Ziv & Salo Perttu & Perola Markus & Burzykowski Tomasz, 2019. "A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(2), pages 1-13, April.
    20. Al-Olaimat Nesreen M. & Bayoud Husam A. & Raqab Mohammad Z., 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3355-:d:915958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.