IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3775-d941286.html
   My bibliography  Save this article

Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications

Author

Listed:
  • Ahmed Elshahhat

    (Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt)

  • Refah Alotaibi

    (Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Mazen Nassar

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt)

Abstract

This study aims to investigate the estimation problems when the parent distribution of the population under consideration is the Nadarajah–Haghighi distribution in the presence of an adaptive progressive Type-II hybrid censoring scheme. Two approaches are considered in this regard, namely, the maximum likelihood and Bayesian estimation methods. From the classical point of view, the maximum likelihood estimates of the unknown parameters, reliability, and hazard rate functions are obtained as well as the associated approximate confidence intervals. On the other hand, the Bayes estimates are obtained based on symmetric and asymmetric loss functions. The Bayes point estimates and the highest posterior density Bayes credible intervals are computed using the Monte Carlo Markov Chain technique. A comprehensive simulation study is implemented by proposing different scenarios for sample sizes and progressive censoring schemes. Moreover, two applications are considered by analyzing two real data sets. The outcomes of the numerical investigations show that the Bayes estimates using the general entropy loss function are preferred over the other methods.

Suggested Citation

  • Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3775-:d:941286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    2. Samir K. Ashour & Ahmed A. El-Sheikh & Ahmed Elshahhat, 2022. "Inferences and Optimal Censoring Schemes for Progressively First-Failure Censored Nadarajah-Haghighi Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 885-923, August.
    3. Hon Keung Tony Ng & Debasis Kundu & Ping Shing Chan, 2009. "Statistical analysis of exponential lifetimes under an adaptive Type‐II progressive censoring scheme," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 687-698, December.
    4. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    5. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    6. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    7. M. M. Mohie El-Din & S. E. Abu-Youssef & Nahed S. A. Ali & A. M. Abd El-Raheem, 2016. "Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 253-273, August.
    8. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    9. Refah Alotaibi & Mazen Nassar & Ahmed Elshahhat, 2022. "Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. EL-Sayed A. El-Sherpieny & Ahmed Elshahhat & Nader M. Abdallah, 2024. "Statistical Analysis of Improved Type-II Adaptive Progressive Hybrid Censored NH Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 721-754, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    2. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    3. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    4. EL-Sayed A. El-Sherpieny & Ahmed Elshahhat & Nader M. Abdallah, 2024. "Statistical Analysis of Improved Type-II Adaptive Progressive Hybrid Censored NH Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 721-754, August.
    5. Refah Alotaibi & Mazen Nassar & Ahmed Elshahhat, 2022. "Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    6. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    7. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    8. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    9. Ritwik Bhattacharya & Biswabrata Pradhan, 2017. "Computation of optimum Type-II progressively hybrid censoring schemes using variable neighborhood search algorithm," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 802-821, December.
    10. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    11. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    12. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    13. Pradhan Biswabrata, 2007. "Point and Interval Estimation for the Lifetime Distribution of a k-Unit Parallel System Based on Progressively Type-II Censored Data," Stochastics and Quality Control, De Gruyter, vol. 22(2), pages 175-186, January.
    14. R. Alshenawy & Ali Al-Alwan & Ehab M. Almetwally & Ahmed Z. Afify & Hisham M. Almongy, 2020. "Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    15. M. Nassar & S. G. Nassr & S. Dey, 2017. "Analysis of Burr Type-XII Distribution Under Step Stress Partially Accelerated Life Tests with Type-I and Adaptive Type-II Progressively Hybrid Censoring Schemes," Annals of Data Science, Springer, vol. 4(2), pages 227-248, June.
    16. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    17. Amit Singh Nayal & Bhupendra Singh & Vrijesh Tripathi & Abhishek Tyagi, 2024. "Analyzing stress-strength reliability $$\delta =\text{ P }[U," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2453-2472, June.
    18. Shu-Fei Wu & Yu-Lun Huang, 2024. "The Assessment of the Overall Lifetime Performance Index of Chen Products with Multiple Components," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
    19. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    20. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3775-:d:941286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.