IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-024-02381-0.html
   My bibliography  Save this article

Statistical inference of the exponentiated exponential distribution based on progressive type-II censoring with optimal scheme

Author

Listed:
  • Naresh Chandra Kabdwal

    (Banasthali Vidyapith)

  • Qazi J. Azhad

    (Shiv Nadar Institution of Eminence)

  • Rashi Hora

    (GL Bajaj Institute of Management and Research)

Abstract

This article is concerned with the estimation of parameters, reliability and hazard rate functions of the exponentiated exponential distribution under progressive type-II censoring data. The maximum likelihood estimation and maximum product of spacing methods are presented to estimate the unknown parameters of the model in classical theme. In the Bayesian paradigm, we have considered both likelihood as well as product of spacing functions to estimates of the model parameters, reliability and hazard rate functions. Bayes estimates are considered under squared error loss function (SELF) using gamma prior for the shape parameter and a discrete prior for the scale parameter. Asymptotic confidence and highest posterior density credible intervals have also been obtained for the model parameters and reliability characteristics. Optimal criteria is also employed to find the best censoring scheme among the considered censoring schemes. A Monte Carlo simulation study is used to compare the performances the derived estimators under different progressive type-II censoring schemes. Finally, to illustrate the practical application of the proposed methodology, two real data analysis are conducted.

Suggested Citation

  • Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora, 2024. "Statistical inference of the exponentiated exponential distribution based on progressive type-II censoring with optimal scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3833-3853, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02381-0
    DOI: 10.1007/s13198-024-02381-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02381-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02381-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biswabrata Pradhan & Debasis Kundu, 2009. "On progressively censored generalized exponential distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 497-515, November.
    2. Anatolyev, Stanislav & Kosenok, Grigory, 2005. "An Alternative To Maximum Likelihood Based On Spacings," Econometric Theory, Cambridge University Press, vol. 21(2), pages 472-476, April.
    3. Sanku Dey & Ahmed Elshahhat & Mazen Nassar, 2023. "Analysis of progressive type-II censored gamma distribution," Computational Statistics, Springer, vol. 38(1), pages 481-508, March.
    4. Gupta, Rameshwar D. & Kundu, Debasis, 2003. "Discriminating between Weibull and generalized exponential distributions," Computational Statistics & Data Analysis, Elsevier, vol. 43(2), pages 179-196, June.
    5. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    6. Kundu, Debasis & Gupta, Rameshwar D., 2008. "Generalized exponential distribution: Bayesian estimations," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1873-1883, January.
    7. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    2. Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
    3. Heba S. Mohammed & Saieed F. Ateya & Essam K. AL-Hussaini, 2017. "Estimation based on progressive first-failure censoring from exponentiated exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1479-1494, June.
    4. Saieed Ateya, 2014. "Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data," Statistical Papers, Springer, vol. 55(2), pages 311-325, May.
    5. Hanieh Panahi, 2019. "Estimation for the parameters of the Burr Type XII distribution under doubly censored sample with application to microfluidics data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 510-518, August.
    6. Debasis Kundu & Anubhav Manglick, 2004. "Discriminating between the Weibull and log‐normal distributions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 893-905, September.
    7. Nesreen M. Al-Olaimat & Husam A. Bayoud & Mohammad Z. Raqab, 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 153-170, December.
    8. Kundu, Debasis & Gupta, Rameshwar D., 2007. "A convenient way of generating gamma random variables using generalized exponential distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2796-2802, March.
    9. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    10. Al-Olaimat Nesreen M. & Bayoud Husam A. & Raqab Mohammad Z., 2021. "Record data from Kies distribution and related statistical inferences," Statistics in Transition New Series, Statistics Poland, vol. 22(4), pages 153-170, December.
    11. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    12. Zoran Vidović, 2019. "Bayesian Prediction of Order Statistics Based on k -Record Values from a Generalized Exponential Distribution," Stats, MDPI, vol. 2(4), pages 1-10, November.
    13. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    14. Tanmay Sen & Yogesh Mani Tripathi & Ritwik Bhattacharya, 2018. "Statistical Inference and Optimum Life Testing Plans Under Type-II Hybrid Censoring Scheme," Annals of Data Science, Springer, vol. 5(4), pages 679-708, December.
    15. Mazen Nassar & Ahmed Elshahhat, 2023. "Statistical Analysis of Inverse Weibull Constant-Stress Partially Accelerated Life Tests with Adaptive Progressively Type I Censored Data," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
    16. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    17. S. Mirhosseini & M. Amini & D. Kundu & A. Dolati, 2015. "On a new absolutely continuous bivariate generalized exponential distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 61-83, March.
    18. Azeem Ali & Sanku Dey & Haseeb Ur Rehman & Zeeshan Ali, 2019. "On Bayesian reliability estimation of a 1-out-of-k load sharing system model of modified Burr-III distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1052-1081, October.
    19. Emilio Gómez-Déniz & Yuri A. Iriarte & Yolanda M. Gómez & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2021. "Statistical Inference for a General Family of Modified Exponentiated Distributions," Mathematics, MDPI, vol. 9(23), pages 1-18, November.
    20. David Han & Debasis Kundu, 2013. "Inference for a step-stress model with competing risks from the GE distribution under Type-I censoring," Working Papers 0181mss, College of Business, University of Texas at San Antonio.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02381-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.