IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i6p1667-1690.html
   My bibliography  Save this article

Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation

Author

Listed:
  • H. Abebe
  • F. Tan
  • G. Breukelen
  • M. Berger

Abstract

In medicine and health sciences mixed effects models are often used to study time-structured data. Optimal designs for such studies have been shown useful to improve the precision of the estimators of the parameters. However, optimal designs for such studies are often derived under the assumption of a zero autocorrelation between the errors, especially for binary data. Ignoring or misspecifying the autocorrelation in the design stage can result in loss of efficiency. This paper addresses robustness of Bayesian D-optimal designs for the logistic mixed effects model for longitudinal data with a linear or quadratic time effect against incorrect specification of the autocorrelation. To find the Bayesian D-optimal allocations of time points for different values of the autocorrelation, under different priors for the fixed effects and different covariance structures of the random effects, a scalar function of the approximate variance–covariance matrix of the fixed effects is optimized. Two approximations are compared; one based on a first order penalized quasi likelihood (PQL1) and one based on an extended version of the generalized estimating equations (GEE). The results show that Bayesian D-optimal allocations of time points are robust against misspecification of the autocorrelation and are approximately equally spaced. Moreover, PQL1 and extended GEE give essentially the same Bayesian D-optimal allocation of time points for a given subject-to-measurement cost ratio. Furthermore, Bayesian optimal designs are hardly affected either by the choice of a covariance structure or by the choice of a prior distribution. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:6:p:1667-1690
    DOI: 10.1007/s00180-014-0512-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0512-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0512-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    2. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    3. Martijn P. F. Berger & Frans E. S. Tan, 2004. "Robust designs for linear mixed effects models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 569-581, November.
    4. Niaparast, Mehrdad, 2009. "On optimal design for a Poisson regression model with random intercept," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 741-747, March.
    5. Mirjam Moerbeek & Gerard J. P. Breukelen & Martijn P. F. Berger, 2003. "A Comparison of Estimation Methods for Multilevel Logistic Models," Computational Statistics, Springer, vol. 18(1), pages 19-37, March.
    6. Cong Han & Kathryn Chaloner, 2004. "Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics," Biometrics, The International Biometric Society, vol. 60(1), pages 25-33, March.
    7. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianshun Yan & Yanyong Zhao & Wentao Wang, 2020. "Likelihood-based estimation of a semiparametric time-dependent jump diffusion model of the short-term interest rate," Computational Statistics, Springer, vol. 35(2), pages 539-557, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.
    2. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.
    3. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    4. Hazan, Alon & Landsman, Zinoviy & E Makov, Udi, 2003. "Robustness via a mixture of exponential power distributions," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 111-121, February.
    5. Cappuccio Nunzio & Lubian Diego & Raggi Davide, 2004. "MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-31, May.
    6. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    7. Jelena Nikolić & Danijela Aleksić & Zoran Perić & Milan Dinčić, 2021. "Iterative Algorithm for Parameterization of Two-Region Piecewise Uniform Quantizer for the Laplacian Source," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    9. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    10. White, Gentry & Porter, Michael D., 2014. "GPU accelerated MCMC for modeling terrorist activity," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 643-651.
    11. Meyer, Renate & Cai, Bo & Perron, François, 2008. "Adaptive rejection Metropolis sampling using Lagrange interpolation polynomials of degree 2," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3408-3423, March.
    12. Neville Francis & Laura E. Jackson & Michael T. Owyang, 2018. "Countercyclical Policy and the Speed of Recovery after Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(4), pages 675-704, June.
    13. Ueckert, Sebastian & Mentré, France, 2017. "A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 203-219.
    14. Helio Migon & Alexandra Schmidt & Romy Ravines & João Pereira, 2013. "An efficient sampling scheme for dynamic generalized models," Computational Statistics, Springer, vol. 28(5), pages 2267-2293, October.
    15. Cai, Bo & Lin, Xiaoyan & Wang, Lianming, 2011. "Bayesian proportional hazards model for current status data with monotone splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2644-2651, September.
    16. Huaiye Zhang & Inyoung Kim, 2016. "Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 1-19, March.
    17. Mazucheli, Josmar & Louzada-Neto, Francisco & Achcar, Jorge A., 2001. "Bayesian inference for polyhazard models in the presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 1-14, November.
    18. Pan, Chun & Cai, Bo & Wang, Lianming & Lin, Xiaoyan, 2014. "Bayesian semiparametric model for spatially correlated interval-censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 198-208.
    19. Yi-Ping Chang & Chih-Tun Yu, 2014. "Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk," Computational Statistics, Springer, vol. 29(1), pages 331-361, February.
    20. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:6:p:1667-1690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.