IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp643-651.html
   My bibliography  Save this article

GPU accelerated MCMC for modeling terrorist activity

Author

Listed:
  • White, Gentry
  • Porter, Michael D.

Abstract

The use of graphical processing unit (GPU) parallel processing is becoming a part of mainstream statistical practice. The reliance of Bayesian statistics on Markov Chain Monte Carlo (MCMC) methods makes the applicability of parallel processing not immediately obvious. It is illustrated that there are substantial gains in improved computational time for MCMC and other methods of evaluation by computing the likelihood using GPU parallel processing. Examples use data from the Global Terrorism Database to model terrorist activity in Colombia from 2000 through 2010 and a likelihood based on the explicit convolution of two negative-binomial processes. Results show decreases in computational time by a factor of over 200. Factors influencing these improvements and guidelines for programming parallel implementations of the likelihood are discussed.

Suggested Citation

  • White, Gentry & Porter, Michael D., 2014. "GPU accelerated MCMC for modeling terrorist activity," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 643-651.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:643-651
    DOI: 10.1016/j.csda.2013.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313001291
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    2. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.
    3. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    4. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Song & Tso, Geoffrey K.F. & Long, Lufan, 2017. "Powered embarrassing parallel MCMC sampling in Bayesian inference, a weighted average intuition," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 11-20.
    2. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
    2. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    3. Hazan, Alon & Landsman, Zinoviy & E Makov, Udi, 2003. "Robustness via a mixture of exponential power distributions," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 111-121, February.
    4. Cappuccio Nunzio & Lubian Diego & Raggi Davide, 2004. "MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-31, May.
    5. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    6. Jelena Nikolić & Danijela Aleksić & Zoran Perić & Milan Dinčić, 2021. "Iterative Algorithm for Parameterization of Two-Region Piecewise Uniform Quantizer for the Laplacian Source," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    8. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    9. Meyer, Renate & Cai, Bo & Perron, François, 2008. "Adaptive rejection Metropolis sampling using Lagrange interpolation polynomials of degree 2," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3408-3423, March.
    10. Neville Francis & Laura E. Jackson & Michael T. Owyang, 2018. "Countercyclical Policy and the Speed of Recovery after Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(4), pages 675-704, June.
    11. Helio Migon & Alexandra Schmidt & Romy Ravines & João Pereira, 2013. "An efficient sampling scheme for dynamic generalized models," Computational Statistics, Springer, vol. 28(5), pages 2267-2293, October.
    12. Cai, Bo & Lin, Xiaoyan & Wang, Lianming, 2011. "Bayesian proportional hazards model for current status data with monotone splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2644-2651, September.
    13. Mahani, Alireza S. & Sharabiani, Mansour T.A., 2015. "SIMD parallel MCMC sampling with applications for big-data Bayesian analytics," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 75-99.
    14. Huaiye Zhang & Inyoung Kim, 2016. "Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 1-19, March.
    15. Mazucheli, Josmar & Louzada-Neto, Francisco & Achcar, Jorge A., 2001. "Bayesian inference for polyhazard models in the presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 1-14, November.
    16. Pan, Chun & Cai, Bo & Wang, Lianming & Lin, Xiaoyan, 2014. "Bayesian semiparametric model for spatially correlated interval-censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 198-208.
    17. Yi-Ping Chang & Chih-Tun Yu, 2014. "Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk," Computational Statistics, Springer, vol. 29(1), pages 331-361, February.
    18. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    19. Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.
    20. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:643-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.