IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v53y2004i4p569-581.html
   My bibliography  Save this article

Robust designs for linear mixed effects models

Author

Listed:
  • Martijn P. F. Berger
  • Frans E. S. Tan

Abstract

Summary. In health sciences, medicine and social sciences linear mixed effects models are often used to analyse time‐structured data. The search for optimal designs for these models is often hampered by two problems. The first problem is that these designs are only locally optimal. The second problem is that an optimal design for one model may not be optimal for other models. In this paper the maximin principle is adopted to handle both problems, simultaneously. The maximin criterion is formulated by means of a relative efficiency measure, which gives an indication of how much efficiency is lost when the uncertainty about the models over a prior domain of parameters is taken into account. The procedure is illustrated by means of three growth studies. Results are presented for a vocabulary growth study from education, a bone gain study from medical research and an epidemiological decline in height study. It is shown that, for the mixed effects polynomial models that are applied to these studies, the maximin designs remain highly efficient for different sets of models and combinations of parameter values.

Suggested Citation

  • Martijn P. F. Berger & Frans E. S. Tan, 2004. "Robust designs for linear mixed effects models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 569-581, November.
  • Handle: RePEc:bla:jorssc:v:53:y:2004:i:4:p:569-581
    DOI: 10.1111/j.1467-9876.2004.05152.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2004.05152.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2004.05152.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.
    2. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.
    3. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:53:y:2004:i:4:p:569-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.