IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp1066-1076.html
   My bibliography  Save this article

Bayesian D-optimal designs for the two parameter logistic mixed effects model

Author

Listed:
  • Abebe, Haftom T.
  • Tan, Frans E.S.
  • Van Breukelen, Gerard J.P.
  • Berger, Martijn P.F.

Abstract

Bayesian optimal designs for binary longitudinal responses analyzed with mixed logistic regression describing a linear time effect are considered. In order to find the optimal number and allocations of time points, for different priors, cost constraints and covariance structures of the random effects, a scalar function of the approximate information matrix based on the first order penalized quasi likelihood (PQL1) is optimized. To overcome the problem of dependence of Bayesian designs on the choice of prior distributions, maximin Bayesian D-optimal designs are proposed. The results show that the optimal number of time points depends on the subject-to-measurement cost ratio and increases with the cost ratio. Furthermore, maximin Bayesian D-optimal designs are highly efficient and robust under changes in priors. Locally D-optimal designs are also investigated and maximin locally D-optimal designs are found to have much lower minimum relative efficiency and fewer time points than maximin Bayesian D-optimal designs. When comparing the efficiencies of designs with equidistant time points with the Bayesian D-optimal designs, it was found that three or four equidistant time points are advisable for small cost ratios and five or six equidistant time points for large cost ratios.

Suggested Citation

  • Abebe, Haftom T. & Tan, Frans E.S. & Van Breukelen, Gerard J.P. & Berger, Martijn P.F., 2014. "Bayesian D-optimal designs for the two parameter logistic mixed effects model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1066-1076.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1066-1076
    DOI: 10.1016/j.csda.2013.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313002867
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martijn P. F. Berger & Frans E. S. Tan, 2004. "Robust designs for linear mixed effects models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 569-581, November.
    2. Drovandi, Christopher C. & McGree, James M. & Pettitt, Anthony N., 2013. "Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 320-335.
    3. Tommasi, C. & López-Fidalgo, J., 2010. "Bayesian optimum designs for discriminating between models with any distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 143-150, January.
    4. Holger Dette, 1997. "Designing Experiments with Respect to ‘Standardized’ Optimality Criteria," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 97-110.
    5. W. R. Gilks & N. G. Best & K. K. C. Tan, 1995. "Adaptive Rejection Metropolis Sampling Within Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 455-472, December.
    6. Mirjam Moerbeek & Gerard J. P. Breukelen & Martijn P. F. Berger, 2003. "A Comparison of Estimation Methods for Multilevel Logistic Models," Computational Statistics, Springer, vol. 18(1), pages 19-37, March.
    7. Cong Han & Kathryn Chaloner, 2004. "Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics," Biometrics, The International Biometric Society, vol. 60(1), pages 25-33, March.
    8. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    9. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Thu Thuy & Mentré, France, 2014. "Evaluation of the Fisher information matrix in nonlinear mixed effect models using adaptive Gaussian quadrature," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 57-69.
    2. Hong-Yan Jiang & Rong-Xian Yue, 2019. "Pseudo-Bayesian D-optimal designs for longitudinal Poisson mixed models with correlated errors," Computational Statistics, Springer, vol. 34(1), pages 71-87, March.
    3. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2021. "Optimal designs for discrete-time survival models with random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 300-332, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
    2. Hazan, Alon & Landsman, Zinoviy & E Makov, Udi, 2003. "Robustness via a mixture of exponential power distributions," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 111-121, February.
    3. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    4. Jelena Nikolić & Danijela Aleksić & Zoran Perić & Milan Dinčić, 2021. "Iterative Algorithm for Parameterization of Two-Region Piecewise Uniform Quantizer for the Laplacian Source," Mathematics, MDPI, vol. 9(23), pages 1-14, November.
    5. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    6. Meyer, Renate & Cai, Bo & Perron, François, 2008. "Adaptive rejection Metropolis sampling using Lagrange interpolation polynomials of degree 2," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3408-3423, March.
    7. Tekle, Fetene B. & Tan, Frans E.S. & Berger, Martijn P.F., 2008. "Maximin D-optimal designs for binary longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5253-5262, August.
    8. Cai, Bo & Lin, Xiaoyan & Wang, Lianming, 2011. "Bayesian proportional hazards model for current status data with monotone splines," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2644-2651, September.
    9. Huaiye Zhang & Inyoung Kim, 2016. "Adaptive Rejection Metropolis Simulated Annealing for Detecting Global Maximum Regions," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 1-19, March.
    10. Mazucheli, Josmar & Louzada-Neto, Francisco & Achcar, Jorge A., 2001. "Bayesian inference for polyhazard models in the presence of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 38(1), pages 1-14, November.
    11. Yi-Ping Chang & Chih-Tun Yu, 2014. "Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk," Computational Statistics, Springer, vol. 29(1), pages 331-361, February.
    12. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    13. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    14. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.
    15. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    16. Cappuccio Nunzio & Lubian Diego & Raggi Davide, 2004. "MCMC Bayesian Estimation of a Skew-GED Stochastic Volatility Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-31, May.
    17. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.
    18. White, Gentry & Porter, Michael D., 2014. "GPU accelerated MCMC for modeling terrorist activity," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 643-651.
    19. Neville Francis & Laura E. Jackson & Michael T. Owyang, 2018. "Countercyclical Policy and the Speed of Recovery after Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(4), pages 675-704, June.
    20. Helio Migon & Alexandra Schmidt & Romy Ravines & João Pereira, 2013. "An efficient sampling scheme for dynamic generalized models," Computational Statistics, Springer, vol. 28(5), pages 2267-2293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1066-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.