IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v79y2009i6p741-747.html
   My bibliography  Save this article

On optimal design for a Poisson regression model with random intercept

Author

Listed:
  • Niaparast, Mehrdad

Abstract

Most of the research on optimal designs concentrates on linear and nonlinear models with fixed effects. In this paper we discuss optimal designs for a Poisson regression model with random intercept. It is shown that the optimal designs are identical across the individuals, but depend on the variance.

Suggested Citation

  • Niaparast, Mehrdad, 2009. "On optimal design for a Poisson regression model with random intercept," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 741-747, March.
  • Handle: RePEc:eee:stapro:v:79:y:2009:i:6:p:741-747
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(08)00508-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Schmelter, 2007. "The Optimality of Single-group Designs for Certain Mixed Models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(2), pages 183-193, February.
    2. Biedermann, Stefanie & Dette, Holger & Zhu, Wei, 2006. "Optimal Designs for DoseResponse Models With Restricted Design Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 747-759, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ueckert, Sebastian & Mentré, France, 2017. "A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 203-219.
    2. Mehrdad Niaparast & Sahar MehrMansour & Rainer Schwabe, 2023. "V-optimality of designs in random effects Poisson regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 879-897, November.
    3. H. Abebe & F. Tan & G. Breukelen & M. Berger, 2014. "Robustness of Bayesian D-optimal design for the logistic mixed model against misspecification of autocorrelation," Computational Statistics, Springer, vol. 29(6), pages 1667-1690, December.
    4. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjoy Sinha, 2013. "Robust designs for multivariate logistic regression," METRON, Springer;Sapienza Università di Roma, vol. 71(2), pages 157-173, September.
    2. Dette, Holger & Holland-Letz, Tim, 2008. "A geometric characterization of c-optimal designs for heteroscedastic regression," Technical Reports 2008,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Fritjof Freise & Norbert Gaffke & Rainer Schwabe, 2024. "A p-step-ahead sequential adaptive algorithm for D-optimal nonlinear regression design," Statistical Papers, Springer, vol. 65(5), pages 2811-2834, July.
    4. Karvanen, Juha, 2009. "Approximate cost-efficient sequential designs for binary response models with application to switching measurements," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1167-1176, February.
    5. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2020. "Geometric characterization of D-optimal designs for random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    6. repec:jss:jstsof:35:i06 is not listed on IDEAS
    7. Mehrdad Niaparast & Sahar MehrMansour & Rainer Schwabe, 2023. "V-optimality of designs in random effects Poisson regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 879-897, November.
    8. Xin Liu & Rong‐Xian Yue & Weng Kee Wong, 2022. "Equivalence theorems for c and DA‐optimality for linear mixed effects models with applications to multitreatment group assignments in health care," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1842-1859, December.
    9. Liu, Xin & Ye, Min & Yue, Rong-Xian, 2021. "Optimal designs for comparing population curves in hierarchical models," Statistics & Probability Letters, Elsevier, vol. 178(C).
    10. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2014. "R-optimal designs in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 127-132.
    11. Nancy Flournoy & José Moler & Fernando Plo, 2020. "Performance Measures in Dose‐Finding Experiments," International Statistical Review, International Statistical Institute, vol. 88(3), pages 728-751, December.
    12. He, Lei & He, Daojiang, 2020. "R-optimal designs for individual prediction in random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    13. Cheng, Jing & Ai, Mingyao, 2020. "Optimal designs for panel data linear regressions," Statistics & Probability Letters, Elsevier, vol. 163(C).
    14. Dorta-Guerra, Roberto & González-Dávila, Enrique & Ginebra, Josep, 2008. "Two-level experiments for binary response data," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 196-208, September.
    15. Martin Radloff & Rainer Schwabe, 2019. "Locally D-optimal designs for a wider class of non-linear models on the k-dimensional ball," Statistical Papers, Springer, vol. 60(2), pages 515-527, April.
    16. Marius Schmidt, 2023. "Standardized maximin D- and c-optimal designs for the Poisson–Gamma model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(6), pages 697-721, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:79:y:2009:i:6:p:741-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.