IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i5p1243-1261.html
   My bibliography  Save this article

Beran-based approach for single-index models under censoring

Author

Listed:
  • Ewa Strzalkowska-Kominiak
  • Ricardo Cao

Abstract

In this paper we propose a new method for estimating parameters in a single-index model under censoring based on the Beran estimator for the conditional distribution function. This, likelihood-based method is also a useful and simple tool used for bandwidth selection. Additionally, we perform an extensive simulation study comparing this new Beran-based approach with other existing method based on Kaplan–Meier integrals. Finally, we apply both methods to a primary biliary cirrhosis data set and propose a bootstrap test for the parameters. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Ewa Strzalkowska-Kominiak & Ricardo Cao, 2014. "Beran-based approach for single-index models under censoring," Computational Statistics, Springer, vol. 29(5), pages 1243-1261, October.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1243-1261
    DOI: 10.1007/s00180-014-0489-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0489-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0489-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    2. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    3. Huang, Zhensheng & Lin, Bingqing & Feng, Fan & Pang, Zhen, 2013. "Efficient penalized estimating method in the partially varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 189-200.
    4. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.
    5. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    6. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    7. Strzalkowska-Kominiak, Ewa & Cao, Ricardo, 2013. "Maximum likelihood estimation for conditional distribution single-index models under censoring," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 74-98.
    8. M. Iglesias Pérez & W. González Manteiga, 2003. "Bootstrap for the conditional distribution function with truncated and censored data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 331-357, June.
    9. Zhang, Riquan & Huang, Zhensheng & Lv, Yazhao, 2010. "Statistical inference for the index parameter in single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 1026-1041, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luís Meira-Machado & Jacobo Uña-Álvarez & Somnath Datta, 2015. "Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model," Computational Statistics, Springer, vol. 30(2), pages 377-397, June.
    2. Chin-Tsang Chiang & Shao-Hsuan Wang & Ming-Yueh Huang, 2018. "Versatile estimation in censored single-index hazards regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 523-551, June.
    3. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strzalkowska-Kominiak, Ewa & Cao, Ricardo, 2013. "Maximum likelihood estimation for conditional distribution single-index models under censoring," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 74-98.
    2. Zhensheng Huang & Xing Sun & Riquan Zhang, 2022. "Estimation for partially varying-coefficient single-index models with distorted measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 175-201, February.
    3. Huang, Zhensheng & Pang, Zhen & Zhang, Riquan, 2013. "Adaptive profile-empirical-likelihood inferences for generalized single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 70-82.
    4. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    5. Lexin Li & Liping Zhu & Lixing Zhu, 2011. "Inference on the primary parameter of interest with the aid of dimension reduction estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 59-80, January.
    6. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    7. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    8. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    9. Xue, Liugen, 2024. "Empirical likelihood in a partially linear single-index model with censored response data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
    10. Tang, Xingyu & Li, Jianbo & Lian, Heng, 2013. "Empirical likelihood for partially linear proportional hazards models with growing dimensions," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 22-32.
    11. Zhang, Hong-Fan, 2021. "Iterative GMM for partially linear single-index models with partly endogenous regressors," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    12. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    13. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    14. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.
    15. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    16. Zhensheng Huang, 2011. "Statistical estimation in partially linear single-index models with error-prone linear covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 339-350.
    17. Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Quadratic inference functions for partially linear single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 115-127.
    18. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.
    19. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    20. Zhiyong Chen & Jianbao Chen, 2022. "Bayesian analysis of partially linear, single-index, spatial autoregressive models," Computational Statistics, Springer, vol. 37(1), pages 327-353, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1243-1261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.