IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v62y2013icp70-82.html
   My bibliography  Save this article

Adaptive profile-empirical-likelihood inferences for generalized single-index models

Author

Listed:
  • Huang, Zhensheng
  • Pang, Zhen
  • Zhang, Riquan

Abstract

We study generalized single-index models and propose an efficient equation for estimating the index parameter and unknown link function, deriving a quasi-likelihood-based maximum empirical likelihood estimator (QLMELE) of the index parameter. We then establish an efficient confidence region for any components of the index parameter using an adaptive empirical likelihood method. A pointwise confidence interval for the unknown link function is also established using the QLMELE. Compared with the normal approximation proposed by Cui et al. [Ann Stat. 39 (2011) 1658], our approach is more attractive not only theoretically but also empirically. Simulation studies demonstrate that the proposed method provides smaller confidence intervals than those based on the normal approximation method subject to the same coverage probabilities. Hence, the proposed empirical likelihood is preferable to the normal approximation method because of the complicated covariance estimation. An application to a real data set is also illustrated.

Suggested Citation

  • Huang, Zhensheng & Pang, Zhen & Zhang, Riquan, 2013. "Adaptive profile-empirical-likelihood inferences for generalized single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 70-82.
  • Handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:70-82
    DOI: 10.1016/j.csda.2012.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312004409
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    2. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    3. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    4. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    5. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.
    6. Chen, S. X., 1994. "Comparing Empirical Likelihood and Bootstrap Hypothesis Tests," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 277-293, November.
    7. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    8. Xue, Liu-Gen & Zhu, Lixing, 2006. "Empirical likelihood for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1295-1312, July.
    9. Hua Liang & Yongsong Qin & Xinyu Zhang & David Ruppert, 2009. "Empirical Likelihood‐Based Inferences for Generalized Partially Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 433-443, September.
    10. Zhang, Riquan & Huang, Zhensheng & Lv, Yazhao, 2010. "Statistical inference for the index parameter in single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 1026-1041, April.
    11. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaohui Guo & Hu Yang & Jing Lv, 2018. "Two step estimations for a single-index varying-coefficient model with longitudinal data," Statistical Papers, Springer, vol. 59(3), pages 957-983, September.
    2. Lai, Peng & Zhang, Qingzhao & Lian, Heng & Wang, Qihua, 2016. "Efficient estimation for the heteroscedastic single-index varying coefficient models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 84-93.
    3. Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.
    4. Yang, Hu & Guo, Chaohui & Lv, Jing, 2014. "A robust and efficient estimation method for single-index varying-coefficient models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 119-127.
    5. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2017. "Quantile regression and variable selection of single-index coefficient model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 761-789, August.
    6. Tang, Xingyu & Li, Jianbo & Lian, Heng, 2013. "Empirical likelihood for partially linear proportional hazards models with growing dimensions," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 22-32.
    7. Zou, Yuye & Wu, Chengxin, 2023. "Composite quantile regression analysis of survival data with missing cause-of-failure information and its application to breast cancer clinical trial," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Huang, Zhensheng & Zhang, Riquan, 2011. "Efficient empirical-likelihood-based inferences for the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 937-947, May.
    3. Xu, Peirong & Zhu, Lixing, 2012. "Estimation for a marginal generalized single-index longitudinal model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 285-299.
    4. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    5. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    6. Feng, Sanying & Kong, Kaidi & Kong, Yinfei & Li, Gaorong & Wang, Zhaoliang, 2022. "Statistical inference of heterogeneous treatment effect based on single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    7. Chang, Ziqing & Xue, Liugen & Zhu, Lixing, 2010. "On an asymptotically more efficient estimation of the single-index model," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1898-1901, September.
    8. Claudio Agostinelli & Ana M. Bianco & Graciela Boente, 2020. "Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 855-893, June.
    9. Han, Zhong-Cheng & Lin, Jin-Guan & Zhao, Yan-Yong, 2020. "Adaptive semiparametric estimation for single index models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    10. Jianhong Shi & Qian Yang & Xiongya Li & Weixing Song, 2017. "Effects of measurement error on a class of single-index varying coefficient regression models," Computational Statistics, Springer, vol. 32(3), pages 977-1001, September.
    11. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    13. Yang, Suigen & Xue, Liugen & Li, Gaorong, 2014. "Simultaneous confidence band for single-index random effects models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 6-14.
    14. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    15. Zhang, Jun & Zhu, Li-Xing & Liang, Hua, 2012. "Nonlinear models with measurement errors subject to single-indexed distortion," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 1-23.
    16. Qingming Zou & Zhongyi Zhu, 2014. "M-estimators for single-index model using B-spline," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(2), pages 225-246, February.
    17. Zhang, Jun & Gai, Yujie & Wu, Ping, 2013. "Estimation in linear regression models with measurement errors subject to single-indexed distortion," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 103-120.
    18. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    19. Hongxia Wang & Zihan Zhao & Hongxia Hao & Chao Huang, 2023. "Estimation and Inference for Spatio-Temporal Single-Index Models," Mathematics, MDPI, vol. 11(20), pages 1-32, October.
    20. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:70-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.