IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v128y2014icp33-50.html
   My bibliography  Save this article

Semiparametric efficient estimation for partially linear single-index models with responses missing at random

Author

Listed:
  • Lai, Peng
  • Wang, Qihua

Abstract

In this paper, we establish the semiparametric efficient bound for the heteroscedastic partially linear single-index model with responses missing at random, and develop an efficient estimating equation method. By solving the estimating equation, we obtain estimators for the parameter vectors in the linear part and the single index part simultaneously. The estimators are asymptotically semiparametrically efficient when the propensity score function is specified correctly. It should be noted that the inverse probability weighted efficient estimating equation cannot be obtained directly from the full data efficient estimating equation by the inverse probability weighted approach. We establish the estimating equation by deriving the observed data efficient score function. Some simulation studies and a real data application were conducted to evaluate and illustrate the proposed methods.

Suggested Citation

  • Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
  • Handle: RePEc:eee:jmvana:v:128:y:2014:i:c:p:33-50
    DOI: 10.1016/j.jmva.2014.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14000487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    2. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    3. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    4. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    5. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    6. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    7. Yanyuan Ma & Liping Zhu, 2013. "Doubly robust and efficient estimators for heteroscedastic partially linear single-index models allowing high dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 305-322, March.
    8. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    9. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    10. Qin, Jing & Shao, Jun & Zhang, Biao, 2008. "Efficient and Doubly Robust Imputation for Covariate-Dependent Missing Responses," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 797-810, June.
    11. Ding, Xiaobo & Wang, Qihua, 2011. "Fusion-Refinement Procedure for Dimension Reduction With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1193-1207.
    12. Yanyuan Ma & Jeng-Min Chiou & Naisyin Wang, 2006. "Efficient semiparametric estimator for heteroscedastic partially linear models," Biometrika, Biometrika Trust, vol. 93(1), pages 75-84, March.
    13. Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
    14. Z. Tan, 2011. "Efficient restricted estimators for conditional mean models with missing data," Biometrika, Biometrika Trust, vol. 98(3), pages 663-684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    2. Fangfang Li & Hui Sun & Yu Gu & Ge Yu, 2022. "A Noise-Aware Multiple Imputation Algorithm for Missing Data," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    3. Luo, Wei & Cai, Xizhen, 2016. "A new estimator for efficient dimension reduction in regression," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 236-249.
    4. Lai, Peng & Zhang, Qingzhao & Lian, Heng & Wang, Qihua, 2016. "Efficient estimation for the heteroscedastic single-index varying coefficient models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 84-93.
    5. Wei, Yuting & Wang, Qihua, 2021. "Cross-validation-based model averaging in linear models with response missing at random," Statistics & Probability Letters, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    2. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    4. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    5. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    8. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    9. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    10. repec:wyi:journl:002176 is not listed on IDEAS
    11. Firpo, Sergio Pinheiro & Pinto, Rafael de Carvalho Cayres, 2012. "Combining Strategies for the Estimation of Treatment Effects," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(1), March.
    12. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    13. Chaohua Dong & Jiti Gao & Dag Tjostheim, 2014. "Estimation for Single-index and Partially Linear Single-index Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 7/14, Monash University, Department of Econometrics and Business Statistics.
    14. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    15. Ferreira, Francisco H. G. & Firpo, Sergio & Galvao, Antonio F., 2017. "Estimation and Inference for Actual and Counterfactual Growth Incidence Curves," IZA Discussion Papers 10473, Institute of Labor Economics (IZA).
    16. Ying-Ying Lee, 2015. "Efficient propensity score regression estimators of multi-valued treatment effects for the treated," Economics Series Working Papers 738, University of Oxford, Department of Economics.
    17. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    18. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
    19. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    20. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Jan 2025.
    21. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:128:y:2014:i:c:p:33-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.