IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i2p377-397.html
   My bibliography  Save this article

Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model

Author

Listed:
  • Luís Meira-Machado
  • Jacobo Uña-Álvarez
  • Somnath Datta

Abstract

One important goal in multi-state modeling is the estimation of transition probabilities. In longitudinal medical studies these quantities are particularly of interest since they allow for long-term predictions of the process. In recent years significant contributions have been made regarding this topic. However, most of the approaches assume independent censoring and do not account for the influence of covariates. The goal of the paper is to introduce feasible estimation methods for the transition probabilities in an illness-death model conditionally on current or past covariate measures. All approaches are evaluated through a simulation study, leading to a comparison of two different estimators. The proposed methods are illustrated using a real colon cancer data set. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Luís Meira-Machado & Jacobo Uña-Álvarez & Somnath Datta, 2015. "Nonparametric estimation of conditional transition probabilities in a non-Markov illness-death model," Computational Statistics, Springer, vol. 30(2), pages 377-397, June.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:2:p:377-397
    DOI: 10.1007/s00180-014-0538-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0538-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0538-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Strzalkowska-Kominiak, Ewa & Cao, Ricardo, 2013. "Maximum likelihood estimation for conditional distribution single-index models under censoring," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 74-98.
    2. Amorim, Ana Paula & de Uña-Álvarez, Jacobo & Meira-Machado, Luís, 2011. "Presmoothing the transition probabilities in the illness-death model," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 797-806, July.
    3. Keilegom, Ingrid Van & Akritas, Michael G. & Veraverbeke, Noel, 2001. "Estimation of the conditional distribution in regression with censored data: a comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 487-500, February.
    4. Ewa Strzalkowska-Kominiak & Ricardo Cao, 2014. "Beran-based approach for single-index models under censoring," Computational Statistics, Springer, vol. 29(5), pages 1243-1261, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgos Bakoyannis & Dipankar Bandyopadhyay, 2022. "Nonparametric tests for multistate processes with clustered data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 837-867, October.
    2. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    3. Niklas Maltzahn & Rune Hoff & Odd O. Aalen & Ingrid S. Mehlum & Hein Putter & Jon Michael Gran, 2021. "A hybrid landmark Aalen-Johansen estimator for transition probabilities in partially non-Markov multi-state models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 737-760, October.
    4. Guibert, Quentin & Planchet, Frédéric, 2018. "Non-parametric inference of transition probabilities based on Aalen–Johansen integral estimators for acyclic multi-state models: application to LTC insurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 21-36.
    5. Fuino, Michel & Wagner, Joël, 2018. "Long-term care models and dependence probability tables by acuity level: New empirical evidence from Switzerland," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 51-70.
    6. Ritesh Ramchandani & Dianne M. Finkelstein & David A. Schoenfeld, 2020. "Estimation for an accelerated failure time model with intermediate states as auxiliary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 1-20, January.
    7. Dennis Dobler & Andrew Titman, 2020. "Dynamic inference for non‐Markov transition probabilities under random right censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 572-586, June.
    8. Gustavo Soutinho & Luís Meira-Machado, 2023. "Nonparametric estimation of the distribution of gap times for recurrent events," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 103-128, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    2. Chin-Tsang Chiang & Shao-Hsuan Wang & Ming-Yueh Huang, 2018. "Versatile estimation in censored single-index hazards regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 523-551, June.
    3. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    4. Legrand, Catherine & Munda, Marco & Janssen, P. & Duchateau, L., 2012. "A general class of time-varying coefficients models for right censored data," LIDAM Discussion Papers ISBA 2012041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Rebeca Peláez Suárez & Ricardo Cao Abad & Juan M. Vilar Fernández, 2021. "Probability of default estimation in credit risk using a nonparametric approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 383-405, June.
    6. Luís Meira-Machado & Javier Roca-Pardiñas & Ingrid Van Keilegom & Carmen Cadarso-Suárez, 2013. "Bandwidth selection for the estimation of transition probabilities in the location-scale progressive three-state model," Computational Statistics, Springer, vol. 28(5), pages 2185-2210, October.
    7. Casanova, Sandrine & Leconte, Eve, 2014. "A nonparametric model-based estimator for the cumulative distribution function of a right censored variable in a finite population," TSE Working Papers 14-487, Toulouse School of Economics (TSE).
    8. Zhao, Shan & Wei, G. W., 2003. "Jump process for the trend estimation of time series," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 219-241, February.
    9. Ricardo Cao, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 664-670, September.
    10. Jacobo de Uña-Álvarez & Luís Meira-Machado, 2015. "Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study," Biometrics, The International Biometric Society, vol. 71(2), pages 364-375, June.
    11. Rebeca Peláez & Ricardo Cao & Juan M. Vilar, 2022. "Bootstrap Bandwidth Selection and Confidence Regions for Double Smoothed Default Probability Estimation," Mathematics, MDPI, vol. 10(9), pages 1-25, May.
    12. Catalina Bolancé & Ricardo Cao & Montserrat Guillen, 2018. "“Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data”," IREA Working Papers 201829, University of Barcelona, Research Institute of Applied Economics, revised Dec 2018.
    13. Rotolo, Federico & Legrand, Catherine & Van Keilegom, Ingrid, 2011. "Simulation of clustered multi-state survival data based on a copula model," LIDAM Discussion Papers ISBA 2011040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Beaudoin, David & Duchesne, Thierry & Genest, Christian, 2007. "Improving the estimation of Kendall's tau when censoring affects only one of the variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5743-5764, August.
    15. Ewa Strzalkowska-Kominiak & Ricardo Cao, 2014. "Beran-based approach for single-index models under censoring," Computational Statistics, Springer, vol. 29(5), pages 1243-1261, October.
    16. Peláez, Rebeca & Van Keilegom, Ingrid & Cao, Ricardo & Vilar, Juan M., 2024. "Probability of default estimation in credit risk using mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    17. Francesco Bravo, 2020. "Semiparametric quantile regression with random censoring," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 265-295, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:2:p:377-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.