IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v118y2013icp115-127.html
   My bibliography  Save this article

Quadratic inference functions for partially linear single-index models with longitudinal data

Author

Listed:
  • Lai, Peng
  • Li, Gaorong
  • Lian, Heng

Abstract

In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounting for the within-subject correlation. Asymptotic properties for the proposed estimation methods are demonstrated. A generalized likelihood ratio test is established to test the linearity of the nonparametric part. Under the null hypotheses, the test statistic follows asymptotically a χ2 distribution. We also evaluate the finite sample performance of the proposed methods via Monte Carlo simulation studies and a real data analysis.

Suggested Citation

  • Lai, Peng & Li, Gaorong & Lian, Heng, 2013. "Quadratic inference functions for partially linear single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 115-127.
  • Handle: RePEc:eee:jmvana:v:118:y:2013:i:c:p:115-127
    DOI: 10.1016/j.jmva.2013.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    3. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    4. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    5. Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
    6. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    7. Yang Bai & Zhongyi Zhu & Wing K. Fung, 2008. "Partial Linear Models for Longitudinal Data Based on Quadratic Inference Functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(1), pages 104-118, March.
    8. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    9. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.
    10. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    11. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    12. You, Jinhong & Chen, Gemai & Zhou, Yong, 2007. "Statistical inference of partially linear regression models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1539-1557, September.
    13. Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
    14. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    15. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Green, Brittany & Lian, Heng & Yu, Yan & Zu, Tianhai, 2023. "Semiparametric penalized quadratic inference functions for longitudinal data in ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    2. Chaohui Guo & Hu Yang & Jing Lv, 2018. "Two step estimations for a single-index varying-coefficient model with longitudinal data," Statistical Papers, Springer, vol. 59(3), pages 957-983, September.
    3. Peirong Xu & Jun Zhang & Xingfang Huang & Tao Wang, 2016. "Efficient estimation for marginal generalized partially linear single-index models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-431, September.
    4. Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
    5. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    6. Shakhawat Hossain & Le An Lac, 2021. "Optimal shrinkage estimations in partially linear single-index models for binary longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 811-835, December.
    7. Lei Liu & Zhihua Sun, 2017. "Kernel-based global MLE of partial linear random effects models for longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 615-635, July.
    8. Zhao, Weihua & Lian, Heng & Zhang, Riquan & Lai, Peng, 2016. "Estimation and variable selection for proportional response data with partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 40-56.
    9. Jun Zhang & Xia Cui & Heng Peng, 2020. "Estimation and hypothesis test for partial linear single-index multiplicative models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 699-740, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    2. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    3. Ma, Shujie & Liang, Hua & Tsai, Chih-Ling, 2014. "Partially linear single index models for repeated measurements," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 354-375.
    4. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    5. Li, Daoji & Pan, Jianxin, 2013. "Empirical likelihood for generalized linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 63-73.
    6. Yang, Suigen & Xue, Liugen & Li, Gaorong, 2014. "Simultaneous confidence band for single-index random effects models with longitudinal data," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 6-14.
    7. Chaohui Guo & Hu Yang & Jing Lv, 2018. "Two step estimations for a single-index varying-coefficient model with longitudinal data," Statistical Papers, Springer, vol. 59(3), pages 957-983, September.
    8. Yang, Yiping & Li, Gaorong & Peng, Heng, 2014. "Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 1-18.
    9. Peixin Zhao & Liugen Xue, 2012. "Variable selection in semiparametric regression analysis for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 213-231, February.
    10. Cho, Hyunkeun & Kim, Seonjin, 2017. "Model specification test in a semiparametric regression model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 105-116.
    11. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    12. Wu, Jingwei & Peng, Hanxiang & Tu, Wanzhu, 2019. "Large-sample estimation and inference in multivariate single-index models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 382-396.
    13. Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
    14. Peirong Xu & Jun Zhang & Xingfang Huang & Tao Wang, 2016. "Efficient estimation for marginal generalized partially linear single-index models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-431, September.
    15. Tian, Ruiqin & Xue, Liugen & Liu, Chunling, 2014. "Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 94-110.
    16. Chen, Huaihou & Paik, Myunghee Cho & Dhamoon, Mandip S. & Moon, Yeseon Park & Willey, Joshua & Sacco, Ralph L. & Elkind, Mitchell S.V., 2012. "Semiparametric model for the dichotomized functional outcome after stroke: The Northern Manhattan Study," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2598-2608.
    17. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    18. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    19. Huang, Zhensheng & Pang, Zhen, 2012. "Corrected empirical likelihood inference for right-censored partially linear single-index model," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 276-284.
    20. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:118:y:2013:i:c:p:115-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.