IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v156y2021ics016794732030236x.html
   My bibliography  Save this article

Iterative GMM for partially linear single-index models with partly endogenous regressors

Author

Listed:
  • Zhang, Hong-Fan

Abstract

In this paper, we consider the estimation method for the partially linear single-index model with endogenous regressors in the linear part. The Generalized Method of Moments (GMM) using instrumental variables is applied to cope with the problem that the parameter estimators may be inconsistent due to endogeneity. The GMM estimation is based on an iterative procedure, which has generalized the well known Minimum Average conditional Variance Estimation (MAVE) method, in the sense that in each iteration the estimates of the nonparametric components and the parameter vectors are obtained from the generalized moments equation instead of the least squares optimization. A specific algorithm to implement the estimation procedure concerning the choice of the instruments is provided. Asymptotic properties of the estimators are also established. Simulated experiments show that the proposed estimation method performs well in finite samples. Application to the National Longitudinal Survey of Young Men data illustrates the proposed model and method in analyzing the returns to schooling.

Suggested Citation

  • Zhang, Hong-Fan, 2021. "Iterative GMM for partially linear single-index models with partly endogenous regressors," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:csdana:v:156:y:2021:i:c:s016794732030236x
    DOI: 10.1016/j.csda.2020.107145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732030236X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zongwu Cai & Ying Fang & Ming Lin & Jia Su, 2019. "Inferences for a Partially Varying Coefficient Model With Endogenous Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 158-170, January.
    2. Cai, Zongwu & Li, Qi, 2008. "Nonparametric Estimation Of Varying Coefficient Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1321-1342, October.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    5. Jean‐Pierre Florens & Jan Johannes & Sébastien Van Bellegem, 2012. "Instrumental regression in partially linear models," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 304-324, June.
    6. Liangjun Su & Irina Murtazashvili & Aman Ullah, 2013. "Local Linear GMM Estimation of Functional Coefficient IV Models With an Application to Estimating the Rate of Return to Schooling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 184-207, April.
    7. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    8. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    9. FLORENS, Jean-Pierre & JOHANNES, Jan & VAN BELLEGEM, Sébastien, 2012. "Instrumental regression in partially linear models," LIDAM Reprints CORE 2456, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    11. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    12. Birke, Melanie & Van Bellegem, Sebastien & Van Keilegom, Ingrid, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," LIDAM Reprints ISBA 2017022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. White, Halbert, 1982. "Instrumental Variables Regression with Independent Observations," Econometrica, Econometric Society, vol. 50(2), pages 483-499, March.
    14. Florens, Jean-Pierre & Johannes, Jan & Van Bellegem, Sebastien, 2012. "Instrumental regression in partially linear models," LIDAM Reprints ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    16. Cai, Zongwu & Das, Mitali & Xiong, Huaiyu & Wu, Xizhi, 2006. "Functional coefficient instrumental variables models," Journal of Econometrics, Elsevier, vol. 133(1), pages 207-241, July.
    17. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    18. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    19. Zongwu Cai & Linna Chen & Ying Fang, 2015. "Semiparametric Estimation of Partially Varying-Coefficient Dynamic Panel Data Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 695-719, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larissa M. Batrancea, 2022. "Determinants of Economic Growth across the European Union: A Panel Data Analysis on Small and Medium Enterprises," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    2. Siti Zaitun Saddam & Nurhuda Nizar & Nurul Azrin Ariffin & Norazira Mohd Abas, 2023. "The Effects of Dynamic Capabilities on Firm’s Financial Performance," Information Management and Business Review, AMH International, vol. 15(1), pages 37-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Victor Chernozhukov & Sokbae Lee & Whitney K. Newey, 2014. "Local Identification of Nonparametric and Semiparametric Models," Econometrica, Econometric Society, vol. 82(2), pages 785-809, March.
    2. Irene Botosaru & Chris Muris & Senay Sokullu, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Department of Economics Working Papers 2022-01, McMaster University.
    3. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    4. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    5. Xiaolin Sun, 2022. "Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach," Papers 2210.15829, arXiv.org, revised Oct 2024.
    6. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    7. Asin, Nicolas & Johannes, Jan, 2016. "Adaptive non-parametric instrumental regression in the presence of dependence," LIDAM Discussion Papers ISBA 2016015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Chen, Qihui, 2021. "Robust and optimal estimation for partially linear instrumental variables models with partial identification," Journal of Econometrics, Elsevier, vol. 221(2), pages 368-380.
    9. Hoshino, Tadao, 2022. "Sieve IV estimation of cross-sectional interaction models with nonparametric endogenous effect," Journal of Econometrics, Elsevier, vol. 229(2), pages 263-275.
    10. Bertille Antoine & Xiaolin Sun, 2022. "Partially linear models with endogeneity: a conditional moment-based approach [Efficient estimation of models with conditional moment restrictions containing unknown functions]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 256-275.
    11. Jing Nie & Juliana Malagon & Julian Williams, 2022. "The impact of high speed quoting on execution risk dynamics: Evidence from interest rate futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1434-1465, August.
    12. Rodrigo Adão & Costas Arkolakis & Sharat Ganapati, 2020. "Aggregate Implications of Firm Heterogeneity: A Nonparametric Analysis of Monopolistic Competition Trade Models," Working Papers 2020-161, Becker Friedman Institute for Research In Economics.
    13. Samuele CENTORRINO & Jeffrey S. RACINE, 2017. "Semiparametric Varying Coefficient Models with Endogenous Covariates," Annals of Economics and Statistics, GENES, issue 128, pages 261-295.
    14. Xin Geng & Carlos Martins-Filho & Feng Yao, 2015. "Estimation of a Partially Linear Regression in Triangular Systems," Working Papers 15-46, Department of Economics, West Virginia University.
    15. Huang, Liquan & Khalil, Umair & Yıldız, Neşe, 2019. "Identification and estimation of a triangular model with multiple endogenous variables and insufficiently many instrumental variables," Journal of Econometrics, Elsevier, vol. 208(2), pages 346-366.
    16. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    17. Su, Liangjun & Hoshino, Tadao, 2016. "Sieve instrumental variable quantile regression estimation of functional coefficient models," Journal of Econometrics, Elsevier, vol. 191(1), pages 231-254.
    18. Jad Beyhum & Jean-Pierre Florens & Elia Lapenta & Ingrid Van Keilegom, 2022. "Testing for homogeneous treatment effects in linear and nonparametric instrumental variable models," Papers 2208.05344, arXiv.org, revised Apr 2023.
    19. Gao, Jiti & Phillips, Peter C.B., 2013. "Semiparametric estimation in triangular system equations with nonstationarity," Journal of Econometrics, Elsevier, vol. 176(1), pages 59-79.
    20. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:156:y:2021:i:c:s016794732030236x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.