IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v11y2014i4p517-530.html
   My bibliography  Save this article

Edge detection by spherical separation

Author

Listed:
  • A. Astorino
  • M. Gaudioso
  • W. Khalaf

Abstract

We describe an optimization-based method for tackling the classic image processing problem known as edge detection and we formulate it in the form of a classification one. The novelty of the approach is in the use of spherical separation as a classification tool in the image processing framework. Spherical separation consists in separating by means of a sphere two given discrete point-sets in a finite dimensional Euclidean space; in our context the two sets are the edge points and the non-edge points, respectively, in the digital representation of a given image. Assuming that the center of the sphere is fixed, the problem reduces to the minimization of a convex and nonsmooth function of just one variable, which can be effectively solved by means of an “ad hoc” bisection method. The results of our experiments on some edge detection benchmark images are provided. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • A. Astorino & M. Gaudioso & W. Khalaf, 2014. "Edge detection by spherical separation," Computational Management Science, Springer, vol. 11(4), pages 517-530, October.
  • Handle: RePEc:spr:comgts:v:11:y:2014:i:4:p:517-530
    DOI: 10.1007/s10287-013-0193-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0193-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0193-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Astorino & M. Gaudioso, 2009. "A fixed-center spherical separation algorithm with kernel transformations for classification problems," Computational Management Science, Springer, vol. 6(3), pages 357-372, August.
    2. Peng Sun & Robert M. Freund, 2004. "Computation of Minimum-Volume Covering Ellipsoids," Operations Research, INFORMS, vol. 52(5), pages 690-706, October.
    3. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    4. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    2. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2015. "Optimal Replenishment Order Placement in a Finite Time Horizon," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1078-1089, March.
    3. Annabella Astorino & Antonio Fuduli, 2015. "Support Vector Machine Polyhedral Separability in Semisupervised Learning," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1039-1050, March.
    4. Hoai Le Thi & Hoai Le & Tao Pham Dinh & Ngai Van Huynh, 2013. "Binary classification via spherical separator by DC programming and DCA," Journal of Global Optimization, Springer, vol. 56(4), pages 1393-1407, August.
    5. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    6. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    7. Annabella Astorino & Manlio Gaudioso & Alberto Seeger, 2014. "An illumination problem: optimal apex and optimal orientation for a cone of light," Journal of Global Optimization, Springer, vol. 58(4), pages 729-750, April.
    8. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    9. Alberto Seeger & José Vidal -Nuñez, 2017. "Measuring centrality and dispersion in directional datasets: the ellipsoidal cone covering approach," Journal of Global Optimization, Springer, vol. 68(2), pages 279-306, June.
    10. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    11. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    12. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    13. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
    14. Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
    15. Wei-jie Cong & Hong-wei Liu & Feng Ye & Shui-sheng Zhou, 2012. "Rank-two update algorithms for the minimum volume enclosing ellipsoid problem," Computational Optimization and Applications, Springer, vol. 51(1), pages 241-257, January.
    16. Liming Yang & Laisheng Wang, 2013. "A class of semi-supervised support vector machines by DC programming," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 417-433, December.
    17. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    18. Efsun Kürüm & Gerhard-Wilhelm Weber & Cem Iyigun, 2018. "Early warning on stock market bubbles via methods of optimization, clustering and inverse problems," Annals of Operations Research, Springer, vol. 260(1), pages 293-320, January.
    19. F. Mashkoorzadeh & N. Movahedian & S. Nobakhtian, 2022. "The DTC (difference of tangentially convex functions) programming: optimality conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 270-295, July.
    20. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:11:y:2014:i:4:p:517-530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.