IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v6y2009i3p357-372.html
   My bibliography  Save this article

A fixed-center spherical separation algorithm with kernel transformations for classification problems

Author

Listed:
  • A. Astorino
  • M. Gaudioso

Abstract

No abstract is available for this item.

Suggested Citation

  • A. Astorino & M. Gaudioso, 2009. "A fixed-center spherical separation algorithm with kernel transformations for classification problems," Computational Management Science, Springer, vol. 6(3), pages 357-372, August.
  • Handle: RePEc:spr:comgts:v:6:y:2009:i:3:p:357-372
    DOI: 10.1007/s10287-007-0051-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-007-0051-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-007-0051-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Astorino & M. Gaudioso, 2002. "Polyhedral Separability Through Successive LP," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 265-293, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoai Le Thi & Hoai Le & Tao Pham Dinh & Ngai Van Huynh, 2013. "Binary classification via spherical separator by DC programming and DCA," Journal of Global Optimization, Springer, vol. 56(4), pages 1393-1407, August.
    2. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    3. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    4. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    5. A. Astorino & M. Gaudioso & W. Khalaf, 2014. "Edge detection by spherical separation," Computational Management Science, Springer, vol. 11(4), pages 517-530, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
    2. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.
    3. Annabella Astorino & Antonio Fuduli, 2015. "Support Vector Machine Polyhedral Separability in Semisupervised Learning," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 1039-1050, March.
    4. A. Astorino & A. Fuduli & M. Gaudioso, 2010. "DC models for spherical separation," Journal of Global Optimization, Springer, vol. 48(4), pages 657-669, December.
    5. Adil Bagirov & Julien Ugon & Dean Webb & Gurkan Ozturk & Refail Kasimbeyli, 2013. "A novel piecewise linear classifier based on polyhedral conic and max–min separabilities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 3-24, April.
    6. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    7. M. Maleknia & M. Shamsi, 2020. "A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 379-409, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:6:y:2009:i:3:p:357-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.